
  

  

Abstract— A simple feedback model for blood pressure 
regulation is described that incorporates multiple 
autoregulatory feedback mechanisms, all of which may be 
monitored by a proposed wearable sensor.   The feedback signals 
measured, either directly or indirectly, are heartrate, peripheral 
vascular resistance, and compression volume. When examined 
for trends among hemodialysis patients, sustained reduction in 
feedback amplitudes below those predicted by the model 
appears to be strongly associated with later blood pressure 
decompensation.   

I. INTRODUCTION 

The body’s ability to compensate against stress caused by 
trauma, illness, and disease can substantially complicate 
diagnosis and detection of complications in many situations.  
For example, multiple autoregulatory feedback loops exist to 
maintain blood pressure at the core and vital organs.   As a 
result, measurements of blood pressure tend to act as a trailing 
indicator of cardiovascular distress, while feedback behaviors 
that are much more difficult to monitor may be changing 
rapidly.  Thus, early prediction of hemodynamic 
decompensation, or a rapid decrease in blood pressure, has 
remained difficult to achieve, due to limitations on 
physiological monitors and patient-to-patient variability. 

One setting in which hemodynamic decompensation is 
relatively common is hemodialysis.   Over 25% of 
hemodialysis sessions have been reported to be complicated 
by decompensation or other symptoms of intradialytic 
hypotension (IDH), with significant impact on morbidity [1].   
Several prior studies have attempted to predict when IDH will 
occur, either by classifying patient risk factors prior to 
hemodialysis [2] or applying statistical and/or machine 
learning techniques to existing physiological measures taken 
during hemodialysis, such as blood pressure (BP), the 
electrocardiogram (ECG), pulse photoplethysmogram (PPG), 
and/or heart rate variability (HRV) data [3] [4] [5] [6] [7].  
However, sensitivity and specificity of these predictors 
remains limited. Several attempts at decompensation 
prediction in other clinical settings have been based on similar 
strategies, such machine learning application to PPG 
waveforms to create a compensatory reserve index (CRI) [8]. 

In contrast, this work seeks to isolate various components 
of cardiovascular autoregulation to construct models of  
interacting feedback dynamics.  Over time frames of minutes 
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to hours, major feedback signals regulating BP are considered 
to include heartrate, compression volume, and peripheral 
vascular resistance [9].  Importantly, we have recently created 
a wearable sensor system for continuously measuring 
peripheral vascular resistance [10] [11], which is otherwise 
available on a continuous basis only in specialized clinical 
settings.   The sensor also provides high-fidelity tracking of 
small peripheral artery pressure fluctuations, which we have 
also proposed for analysis in predicting IDH or assessing other 
cardiovascular events such as hemorrhage [12] [13] [14]. 

Here, we hypothesize that incorporating peripheral 
vascular resistance into feedback models for cardiovascular 
autoregulation can increase understanding of decompensation 
and improve IDH prediction.  This effort differs from 
previous attempts to model feedback dynamics primarily in the 
availability of additional feedback signals from non-invasive 
sources, and also the examination of variation in feedback over 
time during the complex medical intervention of hemodialysis.  
Prior works on autoregulation modeling have primarily 
examined feedback dynamics identification under 
comparatively controlled conditions  [9] [15] [16]. 

 This paper will thus describe a simple feedback model for 
cardiovascular autoregulation, describe how feedback signals 
were tracked, and perform parameter and state for 
hemodialysis patients.  Certain estimator error behaviors will 
be associated with later decompensation during hemodialysis.  

Figure 1. Conceptual framework for decompensation prediction during 
hemodialysis: signals associated with blood pressure autoregulation are 

monitored directly or indirectly using a simple wearable sensor and used to 
identify parameters in an abstracted model for feedback processes within the 

body; signals from the estimator are used to predict later decompensation. 
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II. FEEDBACK MODEL 

The feedback model used for IDH prediction was 
constructed from a simple nonlinear cardiovascular monitor 
and a set of linear low-pass filters representing feedback 
processes. While a major simplification of full cardiovascular 
dynamics, the selection of models was intended to balance the 
range of autoregulatory phenomena to be monitored with the 
number of parameters to be identified. 

The cardiovascular system was modeled as a simple fluidic 
resistance and capacitance driven by a pressure source, with 
resistance and input pressure influenced by “control inputs” 
(vector u) of heart rate, u1, mechanical work done per beat by 
the artery to the sensor (a proxy for compression volume), u2, 
and peripheral vascular resistance, u3: 

𝑃̇𝑃 = 𝑓𝑓(𝑃𝑃,𝐮𝐮,  𝑑𝑑) = 𝑙𝑙1𝑢𝑢1𝑢𝑢2 − 𝑙𝑙2
𝑃𝑃
𝑢𝑢3

+ 𝑙𝑙3𝑑𝑑    (1) 

where P is blood pressure as would be measure using a 
conventional blood pressure (BP) cuff or arterial line; l1 is a 
parameter to scale the combined pressure forcing input of heart 
rate and supposed compression volume; l2 is a parameter for 
first order dynamics produced by total hemodynamic 
capacitance and resistance, assumed to be inversely dependent 
on peripheral vascular resistance; and d is a net disturbance 
from external factor (activity level, hemodialysis effects, etc.). 

 Feedback dynamics were modeled as responding to the 
difference between blood pressure and some supposed internal 
reference pressure, Pr, with a time delay represented as a linear 
low-pass filter.   In addition, the disturbance was assumed to 
be able to affect the feedback signals directly, with comparable 
response time.    The resulting simple feedback model 
becomes, in Laplace space,      

𝑈𝑈𝑖𝑖(𝑠𝑠) = 𝑏𝑏𝑖𝑖
𝑠𝑠+𝑎𝑎𝑖𝑖

(𝑃𝑃𝑟𝑟 − 𝑃𝑃(𝑠𝑠)) + 𝑐𝑐𝑖𝑖
𝑠𝑠+𝑎𝑎𝑖𝑖

𝐷𝐷(𝑠𝑠)          (2) 

where bi is the feedback gain to pressure, ai is the first-order 
filter parameter, and ci is the coupling parameter to external 
disturbance for the i-th control input. 

Measurements y1, y2, and y3 were assumed to be available 
for each of the three feedback signals, though fidelity and 
sampling rate could differ based on source of measurement, as 
described in more detail in Section III.   In addition, a measure 
of BP, y4, was assumed to be at least intermittently available. 
The resulting feedback system with measurement locations is 
summarized in block diagram form in Fig. 2. 

Figure 2. Individual low-order approximations of cardiovascular behavior are 
connected via feedback between blood pressure variation and supposed 

autoregulatory (i.e. feedback control) signals. 

III. DATA COLLECTION 

A. Hardware 
Peripheral arterial behavior was monitored using sensor 

data from a PPG and a compliant piezoelectric polymer 
(polyvinylidene difluoride, or PVDF) worn on the fingers.   
Details of PVDF sensor design and usage for tracking 
peripheral vascular resistance have been previously reported 
in swine subjects in [10] and [11].   In addition to wearable 
sensor information, conventional cuff blood pressure (BP) was 
recorded approximately every 15 minutes. 

B. Data Collection 
 Sensors were applied to 110 hemodialysis patients in the 
inpatient dialysis unit at the University of Michigan Hospital, 
from which 91 complete data sets were successfully collected; 
50 data sets have been fully processed at the time of writing 
and are reported on in this manuscript.  The PVDF ring was 
applied within approximately ten minutes of the beginning of 
hemodialysis, and ring tension was adjusted manually to 
produce a clear PVDF waveform.  For some patients, 
readjustment was performed if the sensor was dislodged due 
to patient activity.  Other than those cases, both patients and 
care providers were kept blind to signal behavior during the 
dialysis session.    All data collection was performed under 
IRB-approved human subject protocol UM HUM00112816. 

C. Signal Processing 
Raw voltage versus time data from the PVDF and PPG 

sensors was processed to provide measures of relative change 
in major autoregulatory cardiovascular behaviors.   First, heart 
rate (labeled HR) was extracted from peak values of the PPG 
signal. Second, a measure was sought to approximate 
compression volume at the heart.   A proxy was selected as the 
mechanical work (labeled MW) done by peripheral arterial 
motion on the PVDF ring within each cardiac cycle.  This is 
only hypothetically related to cardiovascular health but chosen 
as at least partially representative of the heart’s work capacity 
during individual heartbeats. Third, peripheral vascular 
resistance (labeled pVR for conciseness, not to be confused 
with pulmonary vascular resistance often labeled PVR) was 
estimated using methods previously reported  [10] [11]. 

It is important to note that peripheral vascular resistance 
estimation has not yet been directly validated on human 
subjects, so a major assumption in this work is that the 
methods applied to swine subjects translate to humans.   In 
brief, a simple model for tissue viscoelasticity between the 
artery and PVDF and PPG sensors is identified using a fast-
time-scale (200 Hz sampling rate) extended Kalman filter 
(EKF) to produce state estimates of changes in local artery 
radius and internal blood pressure.   pVR changes are derived 
from radius change.  This approach has shown good agreement 
(<5% average absolute error) between estimated vascular 
resistance changes and those measured by gold standard 
arterial catheterization in swine [10].  

An adjustment to prior methods done in this work was to 
adjust sensor noise weighting fort the local artery model EKF 
based on pulse transit time (PTT) between PPG and PVDF 
locations.   When PTT was within a specified margin, PVDF 
and PPG signals were incorporated into the EKF as normal.  
When PTT deviated from the expected margin, one or both the 
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sensors was assumed to be disturbed by patient movement, and 
the EKF was applied during that cardiac cycle based on a 
substantially increased noise variance (i.e., placing 
substantially greater trust in the model vs. measurements). 

For each subject, proposed feedback signals were 
normalized to a 0 to 1 scale based on a set maximum (subscript 
max) and minimum (subscript min) plausible range for those 
signals, to simplify scaling between parameters.   

𝑦𝑦1 = 𝐻𝐻𝐻𝐻−𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚
𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚−𝐻𝐻𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚

 ,         (3) 

𝑦𝑦2 = 𝑀𝑀𝑀𝑀−𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚
𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚−𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚

        (4) 

𝑦𝑦3 = 𝑝𝑝𝑝𝑝𝑝𝑝�−𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚−𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

        (5) 

where y1 is the normalized magnitude of heartrate, y2 is the 
normalized magnitude of work being transmitted to the 
compliant sensor, and y3 is the normalized magnitude of 
peripheral vascular resistance calculated by the local artery 
model EKF.  Average values for the first 30 seconds for 
measured signals were used as initial conditions where 
relevant during further parameter identification. 

A byproduct of the peripheral vascular estimation process 
is to provide a continuous estimate of blood pressure (BP).  
While the PVDF sensor cannot directly measure blood 
pressure, an internal state in the vascular resistance model is 
the fluctuation internal artery pressure over time.  Piezoelectric 
sensing of this type is vulnerable to long term drift, but when 
provided periodically with a reference BP measurement (i.e. 
from a BP cuff), the sensor and estimator have been found to 
track BP measured by conventional means, Pcuff, with 
approximately 10% error over a time period of several hours.  
In the hemodialysis setting, BP cuff measurements are 
available approximately every 15 minutes, while the 
continuous but lower-confidence measure from the sensing 
ring, labeled 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝, was used at other sampling points.   BP 
output, y4, is thus provided by one of two potential sources:  

𝑦𝑦4 = �
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑣𝑣4,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,              𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≠ 0
𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑣𝑣4, 𝑝𝑝𝑝𝑝𝑝𝑝,                  𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0     (6) 

where v4 is a measure of noise or accuracy error in the signals, 
varying with the source (cuff vs. pVR estimator). 

Finally, “disturbance”, d, to the cardiovascular system was 
treated as being partially generated by activity level.  A crude 
approximation of patient activity level, labeled 𝑑̅𝑑, was taken 
from the unfiltered mean PVDF amplitude as computed from 
a rolling averaged of 30 seconds, as large amplitude variations 
in PVDF output are associated with motion artifacts.  Standard 
deviation of the PVDF signal over that period was used to 
compute a disturbance variance for the cardiovascular 
feedback model state estimator described below. 

IV. PARAMETER IDENTIFICATION AND STATE ESTIMATION 

Parameter identification and state estimation were done 
simultaneously using an augmented extended Kalman filter.   
First, dynamics in (1) and (2) were converted to discrete time 
with states collected in state vector 𝐪𝐪 = [𝑃𝑃  𝑢𝑢1  𝑢𝑢2  𝑢𝑢3]𝑻𝑻 .  
Unknown parameters from (1) and (2) were collected in a 
potentially time-varying parameter vector, 

𝛉𝛉 = [𝑃𝑃𝑟𝑟  𝜆𝜆1  𝜆𝜆2  𝜆𝜆3  𝛼𝛼1  𝛽𝛽1  𝛾𝛾1   𝛼𝛼2   𝛽𝛽2  𝛾𝛾2  𝛼𝛼3   𝛽𝛽3   𝛾𝛾3]𝑇𝑇    (7) 
where λ1, λ2, and λ3 are discrete-time analogs to l1, l2, and l3 
from (1), and αi, βi, and γi terms are discrete-time analogs to 
ai, bi, and ci from (2).   State and parameter vectors were 
combined to create a single plant model for the estimator 
based on estimated states, 𝐪𝐪�, and estimated parameters, 𝛿𝛿𝛉𝛉�, 
where δ indicates that parameters are estimated as their 
perturbation from a set of nominal baseline values: 

 

�
 𝐪𝐪�𝟎𝟎(𝑘𝑘 + 1)
𝛿𝛿𝛉𝛉�0 (𝑘𝑘 + 1)

� = �𝑓𝑓(𝐪𝐪�(𝑘𝑘),𝛉𝛉�(𝑘𝑘), 𝑑̅𝑑(𝑘𝑘)) 
𝛼𝛼𝐈𝐈 ∙ 𝛿𝛿𝛉𝛉�(𝑘𝑘)

�  (8) 

 
Here, α is a decay parameter; conceptually, time-varying 
parameters are being treated as though they slowly perform a 
random walk around their nominal values driven by external 
disturbances, to be tracked by this augmented EKF.   
Superscript 0 denotes a priori estimates generated from a 
posteriori estimates from the previous time step. 
 Given the measurements identified in Section III.C., the 
output vector of the physical system is simply  

          y = q + v          (9) 

where v is a vector of the noise in each measurement, and thus 
the estimated system output is simply 𝐲𝐲� = 𝐪𝐪�. 
 A posteriori state and parameter updates are then generated 
in the common observer form  
  

�
 𝐪𝐪�(𝑘𝑘 + 1)
𝛿𝛿𝛉𝛉� (𝑘𝑘 + 1)

�  = �
 𝐪𝐪�𝟎𝟎(𝑘𝑘 + 1)
𝛿𝛿𝛉𝛉�0 (𝑘𝑘 + 1)

� + 𝐋𝐋(𝐲𝐲�(𝑘𝑘) − 𝐲𝐲(𝑘𝑘))          (10) 

        
where L is a gain matrix calculated by existing extended 
Kalman filter methods (in this case, the procedure in [17]) 
based on linearization of dynamics in (8) about the current 
state estimates and iterative generation of error covariance 
and estimator gain matrices. 

V. RESULTS 

A. Peripheral Vascular Resistance Observations 
 Before discussing feedback model estimator results, it is 

useful to describe representative behavior of peripheral 
vascular resistance tracking as implemented based on the 
authors’ previous methods from [11].   It was observed that 
consistency of inferred peripheral vascular resistance alone 
was a strong negative predictor of intradialytic hypotension.   
Among patients where inferred vascular resistance varied less 
than ±50%, only 5% of sessions resulted in substantial 
decompensation (set as a drop >25% of nominal BP) and/or 
had patient reported symptoms of distress.  In contrast, over 
30% of cases with large vascular resistance fluctuations were 
associated with a drop in BP and over 30% with reported 
symptoms (some cases overlapping).   Examples of patients 
with small and large inferred vascular resistance changes are 
shown in Fig. 2 with corresponding BP fluctuations.    
 Our interpretation of these observations is that fluctuations 
in peripheral vascular resistance may be indicative of 
compensatory response that will eventually result in 
decompensation, but vascular resistance change alone is not 
necessarily tied to decompensation.  Rather, vascular  
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Figure 3. Mild variation in inferred or estimated peripheral vascular 
resistance, as in Patient 1 above, is very rarely associated with large BP 
fluctuations, while large patients experiencing large BP tend to exhibit prior 
peripheral vascular response, as in Patient 2 above. 
 
resistance change may also occur as part of a compensation 
process that is sustainable, at least over the several-hour 
period of a hemodialysis session, or as a response to other 
disturbances, such as change in activity level.   The need to 
distinguish unsustainable compensatory response from other 
cases where pVR fluctuated thus partially motivated the 
feedback modeling described above. 

B. Estimator calibration and representative outputs 
 Several items were calibrated in the model and extended 
Kalman filter using an initial training set of 20 patients (from 
50 overall).  These included the selection of 30 seconds for 
averaging of PVDF noise to compute 𝑑̅𝑑 and nominal values 
for θ.  Rolling average duration was selected to minimize 
mean absolute error in (𝐲𝐲� − 𝐲𝐲) for this training data set, while 
nominal values for θ were set based by a brute force search to 
minimize total absolute error (𝐲𝐲� − 𝐲𝐲) across all 20 subjects 
with a single set of values, as a starting point from which 
parameters would then diverge on an individual basis during 
EKF application.  
 Fig. 2 shows a sample set of estimation results for a patient 
with significant BP variation but without decompensation (BP 
remained above that at the beginning of hemodialysis).   The 
estimator is only modestly effective in predicting blood 
pressure trends, with errors up to 30 mmHg, when comparing 
estimates for pressure to the intermittent cuff measurements.  
This is likely because the disturbances that may be perturbing 
blood pressure are largely unknown.  However, the feedback 
signals are much more closely predicted by the estimator.  
This is in part due to substantial autocorrelation of those  

 
Figure 4. Blood pressure predictions from the EKF provide only modest 
tracking of trends in BP during hemodialysis, as for this sample patient, 
though feedback signals are more effectively predicted (solid: from EKF; 
dashed: from physiological sensing).   BP prediction errors tend to be 
associated with sustained error between prediction and measurement of one 
or more of the feedback signals. 
 

signals with themselves, but also aided by the continuous 
feedback measurements and their interrelationship.   Notably 
for the sample patient in Fig. 4, “overperformance” of BP 
relative to the model in the latter portion of hemodialysis is 
associated with an “overperformance” of one of the feedback 
signals:  in this case peripheral vascular resistance remained 
higher than anticipated by the estimator based on feedback 
parameters being identified since the start of the session. 
 To further evaluate apparent feedback effectiveness, a 
control chart-like analysis was performed, with sample results 
shown in Fig. 5 for the patients previously discussed in Fig. 
3.   In Fig. 5, solid lines denote the mean error in each of the 
feedback signals over the time between BP cuff 
measurements (i.e. mean

𝑘𝑘𝑝𝑝≤𝑘𝑘<𝑘𝑘𝑝𝑝−1
(𝑢𝑢�𝑖𝑖 − 𝑢𝑢𝑖𝑖), where kp and kp-1 

represent the current and previous time steps at which BP cuff 
data was taken), ◯ and x points indicate the maximum and 
minimum prediction errors at a single time points during each 
period, and dashed lines represent the expected standard 
deviation in feedback signals, approximated by the mean of 
corresponding diagonal terms in the error covariance matrix. 
 Among the training data set of 20 patients, it was observed 
that large but short duration errors were not strongly 
correlated with BP fluctuations.  However, sustained positive 
error (predicted feedback magnitude larger than measured 
feedback magnitude, or “underperforming” expectations) in 
one or more feedback signals was observed preceding 
decompensation events.    For example, for Patient 1, who had 
little variation in BP cuff measurements, mean feedback error 
was very close to zero; what error was present was also 
largely negative, implying stronger autoregulatory response 
than predicted by the model, and small relative to the expected 
range of deviation obtained from the EKF.   In contrast, for 
Patient 2, who experienced large BP drops early in the 
session, feedback error was consistently positive and nearly a 
full standard deviation above that predicted by the estimator 
throughout the first two hours of hemodialysis.      
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Figure 5. For patients from Fig. 3, comparison of normalized prediction 
error (solid lines) for the three feedback signals in the dynamic BP model, 
averaged over time periods between BP cuff measurements, compared to 
worst case single time point prediction errors (◯: maximum,  x: minimum) 
and approximate modeled standard deviation of those signals, as obtained 
from the EKF error covariance matrix.   For Patient 1, error is small relative 
to anticipated deviation and tends negative (predicted response less than 
observed), while for Patient 2, who experienced large drops in BP, error 
tended positive (measured feedback lagging predicted levels) by nearly a 
full standard deviation. 
 
C. Decompensation Prediction 
 Based on qualitative observations in Sections V.A. and 
V.B., decompensation prediction criteria were pursued based 
on thresholds for peripheral vascular resistance, mean 
feedback signal error, and time duration exceeding threshold 
values.   A crude brute force evaluation of candidate 
thresholds and duration was performed on the 20 patient 
training set, to maximize the product of sensitivity and 
specificity in predicting decompensation.  Decompensation 
was formally defined as a BP reduction >25% from baseline. 

Best performance was found obtained for thresholds of 
pVR exceeding 165% of its initial value and mean feedback 
error exceeding 75% of predicted standard deviation, for a 
duration of 90 seconds.  Under these criteria, sensitivity to 
future decompensation was 100% and specificity was 88% for 
the training data set, and 100% and 84% for the full 50 patient 
sample.   Fig. 6 shows a sample ROC for the full sample when 
varying pVR threshold, with feedback error and duration are 
fixed. Area under the curve was 0.904.  On average, 
thresholds were exceeded 59 minutes prior to decompensation 
measurement with the BP cuff. 

 A sample progression as observed under this approach to 
decompensation prediction is shown in Fig. 7, for a patient 
experiencing decompensation among the validation data set.   
Inferred peripheral vascular was elevated in this patient 
almost immediately and remained elevated throughout the 
session.   Prediction error for feedback signals likewise  

 
Figure 6. ROC for prediction of decompensation (25% BP reduction from 
baseline) for varying peripheral vascular resistance thresholds accompanied 
by violation of feedback signal prediction error for at least 90 seconds.     

 
Figure 5. (Top) Ratio of inferred peripheral vascular resistance to its initial 
value; (Middle) errors in measure feedback signals (positive values mean 
larger predicted value than measured), normalized by approximate standard 
deviation from EKF; (Bottom) BP trajectories, including values PVDF sensor 
as byproduct of pVR estimation and from the feedback model. 
 
gradually increased during the first hour of hemodialysis, 
exceeding the error threshold criteria approximately 30 
minutes into the session, at which point future 
decompensation is predicted to occur.  In this case, weak 
mechanical work done to the sensor, perhaps interpretable as 
lagging pulse pressure, was the primary indicator of 
insufficient cardiovascular response to blood pressure 
changes, though additional deviation in both pVR and HR 
occurred approximately 60 minutes into the session.   Formal 
decompensation criteria were not met until 89 minutes into 
the session, though BP decline had likely also begun to occur 
at approximately 60 minutes.  The patient received a fluid 
bolus shortly thereafter, though if this was responsible for 
stabilizing BP, the estimator would suggest the bolus required 
tens of minutes to take effect.   
 
D. Discussion 
 Results of this study to date are limited by relative rareness 
of quantifiable BP decompensation (as opposed to diagnosis 
based on symptoms or subjective observations) and reliance 
on substantial qualitative interpretation as gold standard 
measures of phenomena used in modeling are not available in 
the hemodialysis setting.  As noted at their introduction, 
feedback measures are not individually validated in humans, 
and much support for their relevance remains subjective.   
Furthermore, dynamic models used to represent feedback 
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dynamics are knowingly simplistic relative to real 
physiology.   Even then, the large number of variables 
substantially limits trust in individual identified parameters, 
though outputs and system states seem to be reasonably 
predictable. 
 Nonetheless, the observed relationships between trends in 
model and estimator outputs and BP behavior for 
hemodialysis patients suggests that there is potential utility in 
the framework of control system analysis to the hemodynamic 
decompensation problem.   We would interpret key features 
of the approach being the ability to adapt dynamics to 
individuals and thus account for variation and 
interconnectedness in relative timing of physiological 
phenomena.  Differing delays in different signals for different 
individuals, in particular, can be hard to capture with other 
statistical methods. Future work will apply these methods to 
patients with more comprehensive physiological monitors, 
such as arterial lines, and on larger patient populations. 

VI. CONCLUSIONS 
This work uses a set of approximate measures of feedback 

signals important for blood pressure autoregulation over 
minute to hour timeframes to predict future decompensation 
in hemodialysis patients.   Formally, BP drops >25% were 
predicted with good sensitivity and specificity using inferred 
changes in peripheral vascular resistance combined with 
prediction errors between anticipated magnitude of 
autoregulatory feedback signals and their measured values, as 
generated by a comparatively simple hemodynamic and 
autoregulatory dynamics model. Parameter identification and 
state estimation were performed concurrently on the model 
using an extended Kalman filter.  Results are limited by lack 
of gold standard physiological data in the hemodialysis 
setting to better validate measurement accuracy, model 
structure, and physiological interpretations.  However, 
relative success in decompensation prediction may suggest 
importance of capturing relative delay and interaction 
between feedback phenomena at an individually-identified 
level to predict hemodynamic decompensation events. 
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