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Abstract—We present a method to estimate high frequency 

rotary motion of a highly compact electrostatic micro-scanner 

using the same electrodes for both actuation and sensing. The 

accuracy of estimated rotary motion is critical for reducing blur 

and distortion in image reconstruction applications with the 

micro-scanner given its changing dynamics due to perturbations 

such as temperature. To overcome the limitation that no dedicated 

sensing electrodes are available in the proposed applications due 

to size constraints, the method adopts electromechanical 

amplitude modulation (EAM) to separate motion signal from 

parasitic capacitance feedthrough, and a novel non-linear 

measurement model is derived to characterize the relationship 

between large out-of-plane angular motion and circuit output. To 

estimate motion, an extended Kalman filter (EKF) and an 

unscented Kalman filter (UKF) are implemented, incorporating a 

process model based on the micro-scanner’s parametric resonant 

dynamics and the measurement model. Experimental results show 

that compared to estimation without using the measurement 

model, our method is able to improve the rotary motion 

estimation accuracy of the micro-scanner significantly, with a 

reduction of root-mean-square error (RMSE) in phase shift of 

86.1%, and a reduction of RMSE in angular position error of 78.5 

%. 

Index Terms—MEMS scanner, sensor modeling, 
extended Kalman filter, unscented Kalman filter, dynamic 
modeling 

I. INTRODUCTION 

ith the continuing development of 

microelectromechanical system (MEMS) technology, 

MEMS scanners have been used in an array of applications 

involving laser scanning and displays [1]. One interesting 

application is to use MEMS scanners in endomicroscope 

instruments [2], such as confocal endomicroscopes [3] or 
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multiphoton endomicroscopes [4], replacing bulky 

conventional counterparts such as scanning mirror 

galvanometers [5].  

MEMS scanners can be classified by their actuation 

principles into four main categories: electrostatic, 

electromagnetic, piezoelectric and electrothermal. Among 

these categories, the electrostatic micro-scanner uses the 

attractive forces generated by two oppositely charged plates or 

electrodes to rotate a mirror for directional laser scanning. 

Compared to other actuation principles, electrostatic actuators 

have advantages of comparatively straightforward fabrication 

and integration into microscopy systems, and therefore 

comprise the majority of endomicroscope scanners in the 

literature [1]. 

For high resolution and large field-of-view (FOV) imaging 

application, these scanners must achieve large deflection 

angles, and therefore are designed to have high quality factor 

and be operated at or near resonant frequencies [5]. As a result, 

this type of scanner suffers from resonance shift due to material 

property variation (density, thermal expansion, Poisson’s ratio 

and elastic constants) and thermal expansion mismatch (due to 

usage of multilayer structures consisting of different materials) 

caused by temperature perturbation or other environmental 

changes [6]. Such a resonance shift will introduce error in phase 

and amplitude information to be used in the image 

reconstruction process. Without appropriate image processing, 

incorrect phase information will lead to blurred images due to 

misplaced pixels while incorrect amplitude information will 

lead to distorted images.  

One solution to this issue is to provide accurate phase and 

amplitude estimation of the rotary motion using on-chip 

sensing. Previous works have combined electrostatic actuation 

with various on-chip sensing mechanisms including 

piezoresistive sensing [7], piezoelectric sensing [8] [9], and 

capacitive sensing [5]. However, all of these designs require 

extra space on-chip and increase the number of electrical 

interconnects needed between the instrument and control 

circuitry, both of which are difficult to accommodate in small 

endomicroscopy instruments (2.4 to 5 mm in diameter) [2]. 

Therefore it is desired to reduce the device size by combining 

the driving and sensing capacitor into one set of electrodes. 

Such design efforts, however, lead to larger feedthrough 

disturbances between driving voltage inputs and sensor outputs 

due to shared electrodes and parasitic capacitances in all of the 

above sensing schemes. Hence, this study aims to seek an 

effective method to extract meaningful feedback signal while 
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reject disturbances, and estimate the rotary motion as accurate 

as possible with obtained signal. 

Our prior studies have shown it is possible to perform high 

accuracy motion estimation with non-linear capacitance sensor 

models using dedicated capacitive electrodes. The feedthrough 

disturbance can either be eliminated by taking the difference of 

sensing signals from repetitive measurements with and without 

applying bias voltages [10] [11] or by purposely interrupting 

the device’s driving voltage [12] [13]. Those methods however 

cannot be directly applied in the configuration in this study. 

A common technique to reject feedthrough is to use 

electromechanical amplitude modulation (EAM), which 

employs an AC carrier at high frequency to perform amplitude 

modulation of the low frequency motion signal, and allows for 

separation of the motion signal and driving voltage feedthrough 

in the frequency domain with carefully designed filters [14]. 

[14] and [15] showed such techniques can be employed on 

sensing capacitors separated from driving capacitors. However 

very large frequency separations are required for use on a 

device using the same electrodes for both sensing and driving, 

and not necessarily applicable as mechanical motion frequency 

increases, as in this study.   

Related to the use of electrostatic actuation and sensing with 

the same electrodes, a bi-axial micro-scanner is reported in 

[16], and the sensing signal was used in a phase-locked loop to 

ensure that the device would consistently be operated at 

resonance of its fast axis. A closed-loop controller for the 

scanner’s slow axis was demonstrated subsequently in [17]. 

However, those works did not explicitly formulate a model 

between scanner’s rotary motions to sensing signal, which 

would permit state estimation across the full range of tilting 

motion. Such modeling effort can be beneficial in building an 

estimator to estimate scanner motion for tracking and feedback 

control applications.  

In this study, we present a method for high-accuracy motion 

estimation for an electrostatic micro-scanner with the same 

electrodes used for both sensing and driving. It employs a 

dedicated amplitude modulation-demodulation (AMDM) 

circuit to perform EAM and extract meaningful sensing signal 

in the presence of feedthrough. A novel non-linear 

measurement model is derived to characterize relation between 

large out-of-plane angular motion and circuit output. Then the 

motion estimation can be accomplished by EKF or UKF 

incorporating a process model based on parametric resonant 

scanner dynamics and the measurement model.  

The presented estimation scheme is the most comprehensive 

for electrostatic micro-scanner rotary motion estimation in 

endomicroscopic laser-scanning applications relative to the 

literature. Specifically, we summarize our contribution as 

following:  

 To propose a non-linear model to characterize the large 

amplitude rotary motion to an AMDM sensing circuit output 

for a compact electrostatic micro-scanner using electrodes 

for both sensing and driving. The modeling of the nonlinear 

capacitance function and demodulation process with 

envelope detector and analysis of frequency bands given 

close spacing of driving and sensing frequencies due to the 

fast mirror response has not been fully addressed in the past. 

 To analyze theoretical effectiveness of EAM on separating 

motion signal and feedthrough disturbance generated by 

electrodes shared for sensing and driving in the above model. 

To implement and experimentally validate an EKF and an 

UKF incorporating single-axis electrostatic micro-scanner 

dynamics and the proposed measurement model.  

The paper is organized as following: in Section II, the target 

and the method to achieve motion estimation are presented. 

Then the experimental set-up and procedures are described in 

Section III.  In Section IV, the method for system identification 

and the estimators performance are discussed. Finally, a 

concluding remark is presented in Section V. 

II. METHODS 

A. Image registration and target of phase estimation 

Since the goal of scanner motion estimation is to track 

potential phase shift of scanner motion and therefore to 

improve image registration, we first derive the target accuracy 

for phase estimation based on the relationship between the 

phase and image registration.  

For simplicity, we examine the target phase shift accuracy of 

a one-dimensional image registered by scanning a line on an 

object. The FOV of an image can be parameterized by 𝑥 such 

that 𝑥 = 0 and 𝑥 = 1 are extremes of the given FOV. In an 

imaging system with Lissajous laser scanning, the discrete 

locations 𝑥(𝑖) at which the object is sampled are described by 

 𝑥(𝑖) = sin (2𝜋𝑓𝑟𝑒𝑠
𝑖

𝑓𝑠
+ 𝜙0) + 0.5 (1) 

where 𝑓𝑟𝑒𝑠 is the mechanical resonant frequency of the scanner, 

𝑓𝑠 is sampling frequency, 𝜙0 is the phase difference between an 

applied periodic input voltage and resulting scanner motion. 

The intensity values from the object at sampling locations given 

by (1) are recorded to a vector 𝐼𝑜(𝑖). The 1D image (2m pixels 

long) of a line scan can be reconstructed if one can map the 

intensity values 𝐼𝑜(𝑖)  to corresponding pixel index k, 

accurately. The pixel index k can be computed by 

 𝑘 = ⌈2𝑚𝑥(𝑖)⌉ = ⌈𝑚sin(𝜓(𝑖) + 𝜙0)⌉ + 𝑚  (2) 

where 𝑚  is half number of pixels in one dimension, ⌈ ⌉ 
represents the least integer (or ceiling) function, and 𝜓(𝑖) =

2𝜋𝑓𝑟𝑒𝑠
𝑖

𝑓𝑠
.  

The image quality degrades when the phase drifts to 

𝜙0 +  𝛿𝜙 and image is still reconstructed assuming phase of 

𝜙0. This causes pixels to be associated with incorrect indices 

and leads to the blurry of the reconstructed image. Denoting the 

phase error as  , the actual pixel index is expressed as: 

 𝑘𝑟𝑒𝑎𝑙 = ⌈𝑚sin(𝜓(𝑖) + 𝜙0 +  𝛿𝜙)⌉ + 𝑚. (3) 

Then the pixel shift 𝛿𝑘 can be defined as:  

 𝛿𝑘 = 𝑘𝑟𝑒𝑎𝑙 − 𝑘 (4) 

Thus, maintaining an acceptable level of pixel shift (𝛿𝑘) 
dictates the target accuracy of phase angle estimation. Denoting 

the acceptable pixel shifting to be index p (𝛿𝑘 ≤ 𝑝), produced 

by corresponding phase shift error 𝛿𝜙𝑝, then using eq (2) – (4), 

𝛿𝑘 can be written as 
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𝛿𝑘 = ⌈𝑚sin(𝜓(𝑖) + 𝜙0 + 𝛿𝜙𝑝)⌉ − ⌈𝑚sin(𝜓(𝑖) + 𝜙0)⌉ (5) 

It can be shown that  𝛿𝑘  is maximum when 𝜓(𝑡) ≈ 𝑛𝜋 ; 

𝑛 𝜖 ℕ0, for small values of 𝛿𝜙𝑝. By linearizing the sine term 

and using the property of least integer functions, we have 

 𝛿𝑘 = 𝑚𝛿𝜙𝑝 ≤ 𝑝 (6) 

This results in an upper bound on 𝛿𝜙𝑝 given 𝑝 and 𝑚 

 𝛿𝜙𝑝 ≤ 𝑝/𝑚 (7) 

A similar analysis can be performed for backward shifting and 

further extended for multi-axis scanners.  

The above derivation is used to define a target phase 

estimation accuracy given image specifications. For instance, 

with an endomicroscope with resolution corresponding to 300 

× 300 pixels (i.e. m = 150) and a target shift of pixel index p = 1, 

the required upper bound of 𝛿𝜙𝑝 ≤
1

150
𝑟𝑎𝑑 ≈ 0.38 deg.  

B. Micro-scanner dynamics and process model 

The electrostatic micro-scanner used in this study is a 

single-axis scanner as shown in Fig. 1. Multiple groups of 

comb-fingers are incorporated to generate electrostatic force 

and rotate the scanner under external voltage excitation. To 

minimize voltage requirements and external connections, all 

stator comb fingers are connected to the same voltage source, 

and all rotor (mirror) fingers are connected to ground. As 

previously shown in [18], out-of-plane motion is only 

generated near integer multiples of the natural frequency of free 

vibration for a planar structure, operated via parametric 

resonance. 

The governing equation for torsional force acting on the 

mirror structure in rotational operation is: 

 𝑇(𝑡) =
1

2

𝑑𝐶𝑠(𝑡)

𝑑𝜃
𝑉(𝑡)2 (8) 

where 𝐶𝑠 is the total capacitance formed by the comb-fingers 

(not including parasitic capacitance), 𝜃 is the tilting angle of 

the micro-scanner and 𝑉 is the driving voltage. The equation of 

motion of the scanner is described as:  

 𝐽𝜃̈ + 𝑏𝜃̇ + 𝑘𝜃 =
1

2

𝑑𝐶𝑠(𝑡)

𝑑𝜃
𝑉(𝑡)2 (9) 

where 𝐽  is the moment of inertia in rotation, 𝑏  is damping 

coefficient, and 𝑘 is the torsional spring constant of the device.  

 

Fig. 1. A single-axis electrostatic micro-scanner used in this study. The 
comb-finger electrodes are used for both driving and sensing purpose.  

Defining states 𝑥1 = 𝜃 and 𝑥2 = 𝜃̇, defining 𝐶𝑠
′ = 𝑑𝐶𝑠 𝑑𝜃⁄ , 

and denoting the sampling interval as 𝑇𝑠, (9) can be discretized 

with a first order Taylor expansion as: 

 [𝑥1,𝑘
𝑥2,𝑘

] = [
𝑥1,𝑘−1 + 𝑇𝑠𝑥2,𝑘−1

−
𝑇𝑠𝑘

2

𝐽2
𝑥1,𝑘−1 + (1 −

𝑇𝑠𝑏

𝐽
) 𝑥2,𝑘−1 +

𝑇𝑠𝐶𝑘
′

2𝐽
𝑉𝑘
2] (10) 

where the subscript 𝑘 stands for the k-th sampling instance in 

the discretized time domain. Assuming the process is corrupted 

by additive zero mean, normally distributed process noise 𝒘𝒌, 

and letting 𝑿𝒌 = [𝑥1,𝑘 𝑥2,𝑘]𝑇, (5) can be represented as  

 𝑿𝒌 = 𝑔(𝑿𝒌−𝟏, 𝑉𝑘) + 𝒘𝒌 (11) 

where 𝑔(∙)  denotes the process model. We denote the 

covariance matrix of 𝑤𝑘 as 𝑸, which after discretization is  

 𝑸 = 𝑄𝜃 [

1

4
𝑇𝑠
4 1

2
𝑇𝑠
3

1

2
𝑇𝑠
3 𝑇𝑠

2
] (12) 

where 𝑄𝜃  is the noise variance of angular position. 

C. Sensing principle and measurement model 

Since 𝐶𝑠 is a function of 𝜃, the same comb-fingers used to 

produce electrostatic force for actuation can be used as angular 

position sensors. In this study, an AMDM circuit was designed 

and implemented to provide amplitude-modulated voltage to 

drive the electrostatic mirror near its resonant frequency and to 

demodulate the sensing signal associated with the tilting 

motion of the scanner.  

 

Fig. 2. Schematic of AMDM circuit used for driving and sensing with the 
electrostatic micro-scanner. The input voltage 𝑉𝑑𝑟  is modulated by a 
carrier voltage 𝑉𝑐 and fed into the scanner. The current generated by the 

rotary motion of sensing capacitance 𝐶𝑠(𝜃) and the feedthrough by the 
parasitic capacitance 𝐶𝑝 are processed by an amplification stage, a HPF 

stage, an envelope detector and a LPF stage subsequently, and is 
measured as 𝑦𝑐𝑎𝑝. 

Fig. 2 depicts the schematic of the AMDM circuit. It consists 

of an amplification stage, a high pass filter stage, an envelope 

detector and a low pass filter stage. The voltage outputs after 

each stage are noted as 𝑉𝑜1, 𝑉𝑜2, 𝑉𝑜3, 𝑦𝑐𝑎𝑝, respectively.  

To simplify measurement model derivation, two 

assumptions have been made: first, the parasitic capacitance is 

modeled as an additive capacitor, 𝐶𝑝 , in parallel with 𝐶𝑠 ; 

second, since the operating frequency of the electrostatic 

scanner is almost always near its resonance, phase shifts 

introduced by the circuitry (low-pass and high-pass filters) are 

assumed to be constant and can be calibrated during initial 

experiments.  
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Firstly, 𝐶𝑠(𝜃) due to the rotary motion can be modeled with a 

Gaussian-like function,  

 𝐶𝑠(𝜃) = 𝐶0𝑒
−(

𝜃

𝜃0
)
2

+ 𝐶𝑏 (13) 

where 𝐶0 is the nominal capacitance, 𝐶𝑏 is a fixed capacitance 

bias and 𝜃0 is the nominal angular displacement. This model 

has been shown to characterize capacitance over large range of 

angular motion quite effectively [18]. 

However, to analyze the frequency bands of the signal 

induced by the driving voltage and the oscillation of the 

capacitor, the Gaussian function can be overly complex. 

Therefore, a quadratic form of capacitance model simplified by 

neglecting the higher-order terms in the Taylor expansion of 

(13) is introduced:  

𝐶𝑠(𝜃) = 𝐶0 (1 − (
𝜃

𝜃0
)
2

+
1

2!
(
𝜃

𝜃0
)
4

−
1

3!
(
𝜃

𝜃0
)
6

+⋯) + 𝐶𝑏  (14) 

For motion |𝜃| ≤ 𝜃0, we approximate (14) by neglecting terms 

with order higher than 4, and then the sensing capacitance, 𝐶𝑠 is 

modeled as quadratic function of 𝜃, 

 𝐶𝑠(𝑡) = 𝑎𝑐𝜃(𝑡)
2 + 𝑏𝑐 (15) 

where 𝑎𝑐 = −
𝐶0

𝜃0
2 is the scale factor of the capacitance model 

and 𝑏𝑐 = 𝐶0 + 𝐶𝑏  is the static capacitance of the capacitance 

model.  

It should be pointed out that the replacement of a Gaussian 

model with a quadratic function is for the purpose of derivation 

of measurement model. Such replacement is valid for modest 

displacements as it is based on the observation that the 

capacitance profile of a comb-finger is symmetric about 𝜃 and 

thus can be modeled by even number of order of polynomials 

[19]. At the end of the derivation of the measurement model, we 

will review this assumption again and return to the model 

defined in (13) for the rest of the discussion. 

As the EAM technique is implemented using a summing 

amplifier, the input voltage 𝑉  to the scanner’s comb-finger 

electrodes is composed of a driving voltage and a carrier 

voltage, and is expressed as: 

 𝑉(𝑡) = 𝑉𝑑𝑟0sin (𝜔𝑑𝑟𝑡) + 𝑉𝑐0sin (𝜔𝑐𝑡) (16) 

where 𝑉𝑑𝑟0  is the amplitude of driving voltage, 𝜔𝑑𝑟  is the 

frequency of driving voltage, 𝑉𝑐0  is the amplitude of carrier 

voltage and 𝜔𝑐  is the carrier frequency. In this study, 𝜔𝑐  is 

selected to be an order-of-magnitude larger than 𝜔𝑑𝑟  (listed in 

TABLE i) to allow more room for the separation of frequencies 

of modulated signal.  

Due to the band-width of the mechanical structure of 

micro-scanner, the carrier voltage is attenuated and the rotary 

motion   𝜃  can be modeled by a sinusoidal function with 

frequency half of 𝜔𝑑𝑟  as  

 𝜃 = 𝜃0sin (
𝜔𝑑𝑟

2
𝑡 + 𝜙) (17) 

where 𝜃0 is amplitude of tilting motion, and 𝜙 is the phase of 

the tilting motion with respect to the driving voltage. By 

substitution of (17) into (15), and application of trigonometric 

identities, we have the 𝐶𝑠(𝑡) expressed as 

 𝐶𝑠(𝑡) = 𝑎𝑠 cos(𝜔𝑑𝑟𝑡 + 2𝜙) + 𝑏𝑠 (18) 

where 𝑎𝑠 = −
𝑎𝑐

2
𝜃0
2 and 𝑏𝑠 =

𝑎𝑐

2
𝜃0
2 + 𝑏𝑐.  

In the AMDM amplification stage, the sensing current 

generated by the all the capacitance in the circuit under external 

voltage 𝑉 is the derivative of the charge, therefore the output 

voltage of first stage 𝑉𝑜1 can be expressed as  

 𝑉𝑜1 = 𝑅𝑓
𝑑

𝑑𝑡
[(𝐶𝑠(𝑡) + 𝐶𝑝)𝑉(𝑡)] (19) 

where 𝑅𝑓 is the feedback resistance. By applying the chain rule, 

we have: 

 𝑉𝑜1 = 𝑉(𝑡)𝑅𝑓
𝑑𝐶𝑠(𝑡)

𝑑𝑡
+ 𝐶𝑠𝑅𝑓

𝑑𝑉(𝑡)

𝑑𝑡
+ 𝐶𝑝𝑅𝑓

𝑑𝑉(𝑡)

𝑑𝑡
 (20) 

Substituting (16) into (20), and applying the chain rule, we have 

6 components in the output 𝑉𝑜1: 

 

{
 
 
 
 

 
 
 
 
𝑉𝑜1 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4 + 𝑉5 + 𝑉6

𝑉1 = 𝑉𝑑𝑟0𝑅𝑓
𝑑𝐶𝑠(𝑡)

𝑑𝑡
sin(𝜔𝑑𝑟𝑡)

𝑉2 = 𝑉𝑐0𝑅𝑓
𝑑𝐶𝑠(𝑡)

𝑑𝑡
sin(𝜔𝑐𝑡)

𝑉3 = 𝜔𝑑𝑟𝑉𝑑𝑟0𝑅𝑓𝐶𝑠(𝑡) cos(𝜔𝑑𝑟𝑡)

𝑉4 = 𝜔𝑐𝑉𝑐0𝑅𝑓𝐶𝑠(𝑡) cos(𝜔𝑐𝑡)

𝑉5 = 𝜔𝑑𝑟𝑉𝑑𝑟0𝑅𝑓𝐶𝑝 cos(𝜔𝑑𝑟𝑡)

𝑉6 = 𝜔𝑐𝑉𝑐0𝑅𝑓𝐶𝑝 cos(𝜔𝑐𝑡)

 (21) 

Further derivation (Appendix, I.A) shows that 𝑉1, 𝑉3 and 𝑉5 

are composed of signal components with frequencies of 𝜔𝑑𝑟 , 

2𝜔𝑑𝑟and DC, and therefore can be filtered out by a high pass 

filter with cut-off frequency be between 2𝜔𝑑𝑟  and 𝜔𝑐. On the 

other hand, 𝑉2, 𝑉4 and 𝑉6 consists of signals with frequencies of 

𝜔𝑐  and 𝜔𝑐 ± 𝜔𝑑𝑟  can be retained by the high pass filter for 

subsequent processing, as illustrated in Fig. 3 (a).  

 

Fig. 3. (a) Illustration of frequency bands of output of amplification stage 

(𝑉𝑜1 ) and separation of bands by high pass filter. (b) Illustration of 
demodulation of motion signal by envelope detector and low pass filter 
in frequency domain.  

As shown in Appendix I.A, by selecting 𝜔𝑐 much larger than 

𝜔𝑑𝑟 , the magnitude of the side bands 𝑉2  can be neglected 

compared to 𝑉4. As 𝜔𝑐 is selected to be an-order-of-magnitude 

larger than that of 𝜔𝑑𝑟 (TABLE i), it is safe to make this 

assumption and model 𝑉𝑜2 as: 

 𝑉𝑜2 = 𝑎𝐻𝑃𝐹(𝑉4 + 𝑉6) (22) 

           +     −     

 

Modulated motion signal and 

feed-through disturbance

(a)

 𝟏

  
  

  

  
  

HPF

       

  

LPF

  

Bands at   

and   ±   

Scaled motion 

signal and bias

(b)

Bands at    ,    ±    
and    ±     

     



IEEE/ASME TRANSACTIONS ON MECHATRONICS 

` 

 

 

where 𝑎𝐻𝑃𝐹  is the gain of the high pass filter.  

After the high pass filter, the capacitive sensing signal 𝑦𝑐𝑎𝑝 

can be constructed using an envelope detector and one or more 

low pass filters as depicted in Fig. 2. The envelope detector 

consists of a diode, a resistor as load and the low pass filter(s). 

The output current of the diode can be modeled as a quadratic 

function of input voltage using a square-law function [20], 

therefore the voltage response of the envelope detector, 𝑉𝑜3 can 

be modeled as  

 𝑉𝑜3 = 𝑎𝑑𝑉𝑜2 + 𝑏𝑑𝑉𝑜2
2  (23) 

where 𝑎𝑑 is the scale factor of envelope detector model, and 𝑏𝑑 

is the bias of the envelope detector. Substituting 𝑉𝑜2 into (23) 

using (22), replacing 𝑉4  and 𝑉6 using (19), and letting 
𝑎𝑜3 = 𝑎𝐻𝑃𝐹𝑎𝑑𝜔𝑐𝑉𝑐0𝑅𝑓, 𝑏𝑜3 = 𝑏𝑑𝑎𝐻𝑃𝐹

2 𝜔𝑐
2𝑉𝑐0

2 𝑅𝑓
2, we have 

 𝑉𝑜3 = 𝑎𝑜3cos(𝜔𝑐𝑡)(𝐶𝑠 + 𝐶𝑝) + 𝑏𝑜3cos
2(𝜔𝑐𝑡)(𝐶𝑠 + 𝐶𝑝)

2
(24) 

By expanding the quadratic term (show in Appendix I.A), we 

obtain signal bands around 2𝜔𝑐 and 𝜔𝑐, and  signal bands at 

2𝜔𝑑𝑟 , 𝜔𝑑𝑟  and DC, as illustrated by Fig. 3 (b). 

Next, by applying low pass filters with cut-off frequency 

slightly above 𝜔𝑑𝑟  to 𝑉𝑜3, all the signals with frequency bands 

above 𝜔𝑑𝑟  can be filtered out. By eliminating the term of 

cos(𝜔𝑑𝑟𝑡 + 2𝜙)  using (18), and lumping all coefficients 

together, we have 

 𝑦𝑐𝑎𝑝(𝑡) = 𝑎𝑐𝑖𝑟𝐶𝑠(𝑡) + 𝑏𝑐𝑖𝑟  (25) 

where 𝑎𝑐𝑖𝑟 = 𝑎𝐿𝑃𝐹𝑏𝑜3(𝑏𝑠 + 𝐶𝑝)  is sensing circuit gain, and 

𝑏𝑐𝑖𝑟 = 𝑎𝐿𝑃𝐹𝑏𝑜3(
1

4
𝑎𝑠
2 −

1

2
𝑏𝑠
2 +

1

2
𝐶𝑝
2)  is sensing circuit bias. 

Both of these parameters can be identified with experimental 

methods described in Section III and Section IV. The above 

derivation from (13) to (25) shows that the change of 

capacitance due to the tilting motion 𝐶𝑠(𝑡) can be modeled by a 

linear transformation of the measured signal 𝑦𝑐𝑎𝑝.  

 

Fig. 4. Experimentally measured input and output (with FFT) voltages at  
amplification stage. (a) measured 𝑉𝑜1 with FFT with no rotatory motion 
excited. (b) measured 𝑉𝑜1  with FFT with rotary motion excited at 
maximum amplitude. Signal of rotary motion observed to be carried at 
side bands with frequencies of 𝜔𝑐 ± 𝜔𝑑𝑟. 

As support of the model above for frequency bands, Fig. 4 

and Fig. 5 show a group of representative input voltage and 

output voltages of each stage experimentally measured by a 

Tektronix TDS 3032C oscilloscope during the sensing circuit 

assembly process (see TABLE i). The output voltage response 

is analyzed by fast-Fourier-transformation (FFT) in real-time.  

Fig. 4 (a) and (b) show two snapshots of the measured input 

voltage and 𝑉𝑜1  (time domain and FFT) during a 𝜔𝑑𝑟  sweep 

around resonance of the scanner. Fig. 4 (a) shows when the 

micro-scanner has no rotary motion, 𝑉𝑜1 is largely composed of 

feed-through of input voltages ( 𝑉5 , 𝑉6  and bias voltage); 

whereas Fig. 4 (b) shows at the moment of the micro-scanner’s 

rotary motion reaches its maximum amplitude, the sensing 

capacitance change induced by the motion is carried at 

sidebands at frequency of 𝜔𝑐 ± 𝜔𝑑𝑟  (𝑉4) and can therefore be 

retained by high pass filter from lower frequency content.  

Fig. 5 (a) shows the measured input voltage and 𝑉𝑜3, the FFT 

(up to 625 kHz) shows that the side bands after envelope 

detector matches the analysis and illustration at Fig. 3 (b). Fig. 

5 (b) shows the measured 𝑦𝑐𝑎𝑝 after low pass filter. The sensing 

signal contains motion signal at frequency of 𝜔𝑑𝑟  and bias 

voltage at DC. 

 

Fig. 5. Experimentally measured input and output (with FFT) voltages at 

demodulation process. (a) measured 𝑉𝑜3 with FFT with maximum rotary 
motion (b) measured 𝑦𝑐𝑎𝑝 with FFT with maximum rotary motion. 

It is worth noting that although the above derivation is based 

on a quadratic capacitance model defined by (15), the relation 

characterized in in (25) is still valid when extended to a 

capacitance model characterized by a Gaussian function 

defined in (13). This is because the higher-order terms of 𝜃2𝑛 

(n > 2) in (14) consists of signal components with relatively 

small magnitudes for 𝜃 < 𝜃0 and high frequency, and therefore 

consist of insignificant portion of signal after filtering.  

On the other hand, using the Gaussian model from (13) to 

help to characterize the tail of the capacitance profile (see Fig. 7 

(b)) is much needed in estimator development, not only because 

such a model is more precise when 𝜃  is larger [18], it also 

provides a bounded asymptotic value for 𝐶𝑠  when 𝜃 

approaches its maximum or minimum value, preventing 

𝑑𝐶𝑠 𝑑𝜃⁄  from overflowing in the Jacobian matrix during the 

recursive updating in the EKF or UKF estimator.  

Therefore, one can establish the overall measurement model 

in discrete-time domain by replacing 𝐶𝑠(𝜃) from (13) into (25) 

and assuming that an additive zero mean normally distributed 

noise, 𝑣𝑘, corrupts the measurement  

 𝑦𝑐𝑎𝑝,𝑘 = 𝑎𝑐𝑖𝑟 [𝐶0𝑒
−(

𝑥1,𝑘
𝜃0

)
2

+ 𝐶𝑏] + 𝑏𝑐𝑖𝑟 + 𝑣𝑘 (26) 

Denoting ℎ(∙) as the measurement model, we have 

 ℎ(𝑥1,𝑘) = 𝑎𝑐𝑖𝑟 [𝐶0𝑒
−(

𝑥1,𝑘
𝜃0

)
2

+ 𝐶𝑏] + 𝑏𝑐𝑖𝑟  (27) 

The parameters of 𝑎𝑐𝑖𝑟 , 𝑏𝑐𝑖𝑟 , 𝜃0 , 𝐶0  and 𝐶𝑏  can be identified 

experimentally by methods described in Section III and IV. 

D. EKF and UKF formulation 

With knowledge of non-linear dynamics of both the 

electrostatic micro-scanner and sensor model, both an EKF and 

(b)

2   
  ±   

   

  

     

  

  

  +    

  𝟏(no motion)

  +    

  𝟏(max motion)

(a)

(a)

2   

  ±   

      

(b)

    

  +      +       

    

  



IEEE/ASME TRANSACTIONS ON MECHATRONICS 

` 

 

 

an UKF were implemented to estimate tilting motion; their 

performance is evaluated and presented in Section IV.  

Both estimators deal with nonlinear models with 

normally-distributed noise. The main difference lies the 

approach used to calculate the mean and covariance of the 

states after propagation by the nonlinear models. The EKF 

perform a first order Taylor expansion of the non-linear models 

(aka Jacobian) around the a priori estimated states and is 

relatively easy to implement [21], whereas the UKF selects a 

minimal number of sigma points to estimate the a priori and a 

posteriori mean and covariance of states, and therefore leads to 

accuracy as high as a third order of Taylor expansion at a cost 

of greater implementation effort [22].  

For the purpose of description of the two filters, we denote 

the superscript ‘–‘ for a priori terms, while the subscript 𝑘 

stands for k-th sampling instance. The state vector is defined to 

be 𝑿 = [𝑥1 𝑥2]𝑇 , where 𝑥1  is angular position and 𝑥2  is 

angular velocity. Having the most important components such 

as process model (Section II B) and measurement model 

(Section II C) described in detail, we present the rest of 

derivation of estimators only in high level due to the limit of 

page. The EKF algorithm is:  

 

Algorithm 1: EKF 

1. Project a priori state estimates 

𝑿̂𝑘
− = 𝑔(𝑿̂𝑘−1, 𝑉𝑘),     𝑷𝒌

− = 𝑮𝒌𝑷𝒌−𝟏𝑮𝒌
𝑻 + 𝑸  

2. Propagating measurement model 

𝑦̂𝑐𝑎𝑝,𝑘 = ℎ(𝑥̂1,𝑘
− ) 

3. Project a posteriori state estimates 

𝑲𝑘 = 𝑷𝒌
−𝑯𝒌

𝑻(𝑯𝒌𝑷𝒌
−𝑯𝒌

𝑻 + 𝑅)
−1

 

𝑿̂𝒌 = 𝑿̂𝒌
− +𝑲𝒌(𝑦𝑐𝑎𝑝,𝑘 − 𝑦̂𝑐𝑎𝑝,𝑘),     𝑷𝒌 = 𝑷𝒌

− − 𝑲𝒌𝑯𝒌
𝑻𝑷𝒌

− 

 

where 𝑿̂𝑘
− is the a priori states estimation, 𝑷𝒌

− is the a priori 

error covariance matrix，𝑔(∙) is the process model defined in 

(10) and ℎ(∙) is the measurement model defined in (27), 𝐺𝑘 and 

𝐻𝑘  are the Jacobian matrix of the process model and 

measurement model evaluated at a priori respectively, 𝑸 is the 

covariance matrix of process noise defined in (12), 𝑦̂𝑐𝑎𝑝,𝑘 is the 

estimated measurement, 𝑲𝒌  is the Kalman gain, 𝑅  is 

covariance matrix of measurement noise, 𝑿̂𝒌 is the a posteriori 

states estimation and 𝑃𝑘  is the a posteriori error covariance 

matrix. 

The UKF algorithm is: 

Algorithm 2: UKF 

1. Set sigma points 

𝑿𝒌−𝟏
 𝒊𝒈

= {(𝑿̂𝑘−1
𝑖 ,𝑊𝑖)|𝑖 = 0 2𝑛𝑎𝑢𝑔)} 

2. Project a priori state estimates 

𝑿̂𝒌
𝒊,− = 𝑔(𝑿̂𝒌−𝟏

𝒊 ),      𝑿̂𝒌
− = ∑ 𝑊𝑖2𝑛𝑎𝑢𝑔

𝑖=0
𝑿̂𝒌
𝒊,−

 

𝑷𝒙,𝒌
− = ∑ 𝑊𝑖[𝑿̂𝒌

𝒊,− − 𝑿̂𝒌
−][𝑿̂𝒌

𝒊,− − 𝑿̂𝒌
−]

𝑇

2𝑛𝑎𝑢𝑔

𝑖=0

+𝑸 

3. Propagating measurement model 

𝑦̂𝑐𝑎𝑝,𝑘
𝑖 = ℎ(𝑥̂1,𝑘

𝑖,−),        𝑦̂𝑐𝑎𝑝,𝑘 = ∑ 𝑊𝑖𝑦̂𝑘
𝑖2𝑛𝑎𝑢𝑔

𝑖=0
 

𝑃𝑦,𝑘 = ∑ 𝑊𝑖[𝑦̂𝑐𝑎𝑝,𝑘
𝑖 − 𝑦̂𝑐𝑎𝑝,𝑘]

2𝑛𝑎𝑢𝑔

𝑖=0

[𝑦̂𝑐𝑎𝑝,𝑘
𝑖 − 𝑦̂𝑐𝑎𝑝,𝑘]

𝑇
+ 𝑅 

4. Project a posteriori state estimates 

𝑷𝒙 ,𝒌 = ∑ 𝑊𝑖[𝑿̂𝒌
𝒊,− − 𝑿̂𝒌

−]

2𝑛𝑎𝑢𝑔

𝑖=0

[𝑦̂𝑐𝑎𝑝,𝑘
𝑖 − 𝑦̂𝑐𝑎𝑝,𝑘]

𝑇
+ 𝑅 

𝐾𝑘 = 𝑃𝑥𝑦,𝑘𝑃𝑦,𝑘
−1 

𝑿̂𝒌
𝒊 = 𝑿̂𝒌

𝒊,− + 𝐾𝑘(𝑦𝑐𝑎𝑝,𝑘
𝑖 − 𝑦̂𝑐𝑎𝑝,𝑘

𝑖 ),   𝑷𝒙,𝒌 = 𝑷𝒙,𝒌
− + 𝐾𝑘𝑃𝑦,𝑘𝐾𝑘

𝑇 

 

where 𝑿𝒌−𝟏
 𝒊𝒈

 is a set of sigma vectors and their associated 

weights, with 𝑿̂𝑘−1
𝑖  a sigma vector and 𝑊𝑖  is its associated 

weight. The number of augmented sigma vectors 𝑛𝑎𝑢𝑔  is 

determined by the dimension of the state, 𝑊𝑖 is set to be 
𝜆

(𝜆+𝐿)
 (i 

= 0) or 
1

2(𝜆+𝐿)
 (i = 1, 2…2𝑛𝑎𝑢𝑔), and 𝐿 = 1 + 2𝑛𝑎𝑢𝑔 [22].  𝑿̂𝒌

𝒊,−
 

is the sigma vector transformed by the process model, 𝑿̂𝒌
− is the 

mean of a priori states estimation, 𝑷𝒙,𝒌
−  is the a priori error 

covariance matrix, 𝑸 is the covariance matrix of process noise, 

𝑦̂𝑐𝑎𝑝,𝑘
𝑖  is the estimated measurement with the i-th sigma vector, 

𝑦̂𝑐𝑎𝑝,𝑘 is the estimated measurement, 𝑃𝑦,𝑘 is the covariance of 

measurement estimation, 𝑷𝒙 ,𝒌 is the cross covariance between 

estimated states and the measurement, 𝑅  is the covariance 

matrix of measurement noise, 𝑿̂𝒌
𝒊  is the mean of the a posteriori 

states estimates and 𝑷𝒙,𝒌 is the a posteriori error covariance 

matrix.  

III. EXPERIMENTS 

This section describes the experimental set-up and the 

experiments for process model and measurement model 

identification and estimator performance evaluation.  

A. Experimental set-up 

The experimental set up is depicted in a schematic shown as 

Fig. 6 (a). Two command voltages (driver and carrier) were 

added using a summing amplifier and then amplified by a 

TEGAM 2340 amplifier with 20 times amplification. The 

amplified amplitude modulated driving voltage was fed into the 

single-axis electrostatic micro-scanner (see Fig. 1) to drive it 

near its resonant frequency.  

It is worth noting that while the micro-scanner is more 

commonly excited using square wave driving voltage [23], it is 

also possible to drive the micro-scanner with a sinusoidal 

voltage [14]. One difference between the two choices that 

cannot be ignored in this study is that a square voltage 

introduces more frequency bands. For this study, we choose to 

use a sinusoidal voltage input in order to isolate the frequency 

bands introduced by the driving voltage, with modest reduction 

in amplitude. 

The tilting motion of the micro-scanner was recorded by two 

different sensing systems. The first was the capacitive sensing 

circuit described in Section II-C (Fig. 2), which transduced the 
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motion into the signal 𝑦𝑐𝑎𝑝. The second system was an optical 

sensing stage, which provided ground truth angular position 

measurement as a voltage signal 𝑦𝑃𝑆𝐷 .  

 

 

Fig. 6. (a) Schematic of experimental set-up. (b) A schematic of the  
optical sensing system used, it provided ground truth measurement of 
the tilting motion. A beam splitter is used to deflect the laser beams from 
the source and from the MEMS scanner in order to reduce the distortion 
generated. (c) A photo of optical sensing system used in the study. 

The schematic of the optical sensing stage is depicted in Fig. 

6 (b) and the actual set-up is shown in Fig. 6 (c). it consisted of 

an ON-TRAK PSM 2-10 position sensing detector (PSD),  a 

BS004 Thorlabs beam splitter, and a OZ Optics FODL-42.5U 

635 nm wavelength laser source. During the measurement, a 

laser beam was directed to the beam splitter, and half of the 

laser was reflected and directed to the mirror surface of the 

MEMS scanner at a 0º incidence angle. With the MEMS 

scanner driven by external stimulus, the mirror surface rotates 

and reflects the incoming beam to the same beam splitter, and 

the reflected beam is split by the beam splitter again before the 

final portion of the beam being received by the PSD and 

converted into a voltage signal 𝑦𝑃𝑆𝐷 . 𝑦𝑃𝑆𝐷  was converted into 

angular displacement using geometry relation and PSD gains. 

B. Experimental procedures  

To identify the parameters related to the models and to 

evaluate estimators’ performance, a set of ringdown 

experiments and a set of steady-state responses experiments 

were performed, and the experimental settings are summarized 

in TABLE i.  

The first set of ringdown experiments was done to identify 

the micro-scanner’s dynamic model and capacitance profile [9]. 

The driving voltage was swept in frequency from high to low 

near 31.10 kHz to allow the scanner reach to maximum tilting 

amplitude. After the tilting motion stabilized, the driving 

voltage was switched from AC to DC to allow the scanner to 

free oscillate with a constant bias voltage applied. During 

ring-down tests,  𝑉𝑜1 (see Fig. 2) and 𝑦𝑃𝑆𝐷were recorded using 

a NI PCI 6115 DAQ with 12 bit resolution and 5 MHz sampling 

rate. A customized LabVIEW program was developed to send 

command voltage and log data. 

TABLE I  

EXPERIMENTAL SETTINGS FOR ELECTROSTATIC MICRO-SCANNER 

Symbol Description Value 

𝑉𝑑𝑟0 Amplitude of driving voltage 30 V (0 V to 60V) 

𝑉𝑐0 Amplitude of carrier voltage 6 V 

𝑓𝑟𝑒𝑠 
Resonant frequency of 

micro-scanner 
15.50 kHz 

𝑓𝑑𝑟 Frequency of driving voltage 31.11 to 31.50 kHz 

𝑓𝑐 Frequency of carrier voltage 500 kHz 

𝑅𝑓 Feedback resistors 17.86 kohm 

𝑉𝑏𝑖𝑎𝑠 Bias voltage 23.76 V 

𝑓𝐻𝑃 HPF cut-off frequency 482 kHz 

𝑓𝐿𝑃 LPF cut-off frequency 40.8 kHz 

𝑓𝐸𝐷 Envelop detector LPF cut-off 41.1 kHz 

 

The second set of experiments consisted of frequency 

sweeps of steady-state responses of micro-scanner, and the 

measurements were used to identify remaining model 

parameters and evaluate the estimators’ performance. In these 

experiments, the scanner was excited with 

amplitude-modulated driving voltages at a set of frequencies 

near resonance, with 𝑦𝑐𝑎𝑝, 𝑦𝑃𝑆𝐷  and driving voltages recorded. 

In total a set of 15 frequencies ranging from 31.11 kHz to 31.50 

kHz were tested. During steady state frequency sweeps, a dual 

channel function generator was used to provide command 

carrier voltage and provide voltage to the driving circuit, while 

an Agilent InfinitiVision DSO-X 2024A oscilloscope was used 

to record the measurements. 

IV. RESULTS AND DISCUSSION 

In this section, the experimental results are processed and 

presented. First, a system identification is performed. Second, 

the performance of estimators are defined and evaluated. At 

last, the effect of different errors in phase estimation on the 

quality of image reconstruction is demonstrated in a 

post-processed in-vivo mouse colon image. 

A. System identification 

The system identification process involves three independent 

steps: first, identifying the parameters of Gaussian capacitance 

model defined in (13), 𝜃0, 𝐶0 and 𝐶𝑏; second, identifying the 

coefficients of overall circuit gains defined in (25), 𝑎𝑐𝑖𝑟  and 

𝑏𝑐𝑖𝑟; third, identifying the actuator model.  

TABLE II 

IDENTIFIED PARAMETERS OF MODELS AND ESTIMATORS 

Symbol Description Value 

𝐽 Moment of inertia 1.15 × 10
-14

 kg m
2
 

𝑘 Spring constant 1.10 × 10
-4
 N m 

𝑏𝑣 Viscous damping coefficient 5.95 × 10
-12

 N m/s 

𝑄𝜃 Noise variance of angular position 10
11

 m/s
2
 

𝜃0 Nominal angular displacement 0.2 rad 

𝐶0 Nominal capacitance 5.71 pF 

𝐶𝑏 Parasitic capacitance 9.79 pF 

𝑎𝑐𝑖𝑟 Circuit scale factor -0.3574 V/pF 

𝑏𝑐𝑖𝑟 Circuit bias 6.3945 V 

𝑅 Covariance of measurement noise 1.92 × 10
-4
 V

2
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The second step uses a subset of result from the steady state 

frequency sweep experiments. The ground truth 𝜃(𝑡) is used as 

the input to the 𝐶𝑠(𝜃) model identified to obtain 𝐶𝑠(𝑡). Then by 

treating 𝐶𝑠(𝑡)  and correspondingly observed 𝑦𝑐𝑎𝑝(𝑡)  as 

knowns,  𝑎𝑐𝑖𝑟  and 𝑏𝑐𝑖𝑟  can be solved by least square methods 

 

Fig. 7. (a) Measurement of ringdown test and fitted decay curve for 
actuator model parameter identification. (b) Experimentally identified 
capacitance profile vs. modeled capacitance profile. The tail of 
capacitance profile vs. larger angle modeled improves the numerical 
stability of estimator implementation. 

The covariance of measurement noise is identified by 

measuring the circuit output with zero tilting motion. The 

identified parameters are summarized in TABLE ii. 

The actuator model was identified by first calculating the 

moment of inertia, 𝐽, from the dimensions of the micro-scanner, 

and then fitting the decay curve of the experimentally measured 

ringdown trajectory using a linear viscous damping and spring 

constant [9] as illustrated in Fig. 7 (a).   

B. Estimators performance comparison 

In this section, the performance of estimators are defined and 

evaluated. First, three estimation schemes are selected for 

comparison: actuator model alone (ACM), EKF incorporating 

actuator and measurement model (EKF), UKF incorporating 

actuator model and measurement model (UKF), and the 

performance metrics are calculated against experimentally 

measured ground truth (EXP).  

 

Fig. 8. (a) Experimentally measured driving voltage (carrier filtered for 
better presentation). (b) Tilting angle measured (EXP) or estimated by 
actuator model (ACM), extended Kalman filter (EKF) and unscented 
Kalman filter (UKF). 

Second, the root-mean-square error (RMSE) of angular 

position and RMSE of phase shift of the micro-scanner are 

selected as performance metrics. The phase shift is defined as 

the difference of the timing between the peak value of an 

angular displacement and the prior peak value of the driving 

voltage. The performance of estimator is evaluated using the 

subset of steady state frequency sweep experiments 

complementary of the subset used for system identification. 

Fig. 8 shows a representative excitation voltage (without 

modulation) (a) and resultant tilting motion (b) against time. As 

illustrated, both the EKF and UKF show less error in phase shift 

compared to the ACM, and therefore have more accurate 

angular position estimation. 

 

Fig. 9. (a) RMSE of angular position of MEMS device measured by 
optical system (EXP) and estimated by actuator model (ACM), extended 
Kalman filter (EKF) and unscented Kalman filter (UKF). (b) RMSE of 
phase shift of tilting angle measured and estimated respectively. 

Fig. 9 shows the RMSE of angular position (a) and RMSE of 

phase shift (b) of different estimators. Both EKF and UKF 

provide significantly more accurate angular position and phase 

shift estimation than ACM across the tested frequencies.  

The average RMSE for the testing data set is also quantified 

and listed in TABLE iii. For perspective, the RMSE of angular 

position is also computed as the percentage of the peak-to-peak 

amplitude of the tilting motion. The higher estimation accuracy 

of the UKF over EKF is likely due to the UKF being more 

accurate in estimating mean and covariance of states 

propagated by non-linear models than the EKF. The error in 

phase estimation using the UKF reaches the target accuracy of 

0.38 degrees derived in Section II A given the exemplary 

setting of 300 × 300 resolution and single-pixel index shift. 

TABLE III 

RMSE OF ANGULAR POSITION AND PHASE SHIFT BY ESTIMATORS 

Estimator 
RMSE 

Angular position (deg) 

RMSE 

phase shift (deg) 

ACM 2.89 2.73 

EKF 0.89 (reduced 69.2%) 0.68 (reduced 75.1%) 

UKF 0.62 (reduced 78.5%) 0.38 (reduced 86.1%) 

 

It is worth noting that according to (7), the target phase shift 

accuracy varies with image resolution and number of pixel 

index shift. For instance, the target phase shift accuracy would 

be 0.76 deg if two-pixel index shift were allowed, and EKF’s 

accuracy would therefore be qualified. In the case of higher 

image resolution, meaningful improvement in image quality 

can still be made with UKF or EKF compared to without using 

estimator or using ACM, as demonstrated in Section IV C. In 

summary, it is advised to choose type of estimators to balance 

target estimation accuracy and implementation effort.  
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C. Effect of phase estimation error on mouse colon 
image 

In this subsection, we demonstrate the effect of different 

errors in phase estimation on the quality of image 

reconstruction. We used a reconstructed in-vivo mouse colon 

image with 400 × 400 resolution and 250 × 250 µm FOV as a 

representative example. The pixels on the image were sampled 

in a Lissajous pattern with a dual-axis MEMS scanner with 

scanning frequencies 27.68 kHz for x-axis and 6.54 kHz for 

y-axis. In the demonstration, only the phase estimation of the 

fast axis (x-axis) was varied to match the single-axis phase 

estimation reported in TABLE iii. For reader’s reference, 

single-pixel index shift requires accuracy of 0.29 deg in phase 

shift estimation, whereas two-pixel index shift requires 0.57 

deg. 

 

Fig. 10. Comparison of reconstructed in-vivo images of mouse colon 
with various phase adjustment in motion generated by x-axis. (a) 
Without phase adjustment. (b) With near optimal phase adjustment by 
tuning. (c) With phase adjustment equivalent to ACM performance. (d) 
With phase adjustment equivalent to UKF performance.  

The image is first reconstructed with phases identified during 

laboratory calibration prior to the in-vivo experiments in both 

axes (380.143 degree for x-axis and 370.116 degree for y-axis), 

shown as Fig. 10(a). The image has noticeable blur as the phase 

has drifted due to the change of micro-scanner dynamics inside 

the mouse’s colon. Secondly, a near-optimal phase shift in 

x-axis is estimated (379.398 degree for x-axis) by manual 

tuning and the resultant image is shown as Fig. 10 (b). This is 

done due to the absence of ground truth measurement of the 

scanner’s motion inside the mouse body, and is only for the 

purpose of serving as a benchmark. Then, errors equivalent to 

the performance of the estimators were introduced in the x-axis 

phase estimation during the reconstruction of the corresponding 

images (0.38 degree for UKF and 2.73 degree for ACM) to 

emulate the best case single-axis phase estimation with (UKF) 

and without (ACM) capacitive sensor measurement. The 

resultant images are shown as Fig. 10 (c) and (d) respectively. 

The level of accuracy of phase estimation equivalent to UKF’s 

performance lead to noticeable improvement in blur reduction 

compared to that of ACM, even when phase correction is only 

applied to the fast axis. 

V. CONCLUSION 

Accurate estimation of phase shift of the scanning trajectory 

of MEMS micro-scanners is necessary to avoid blur of image 

reconstructions in endoscopy applications. To overcome this 

issue, we present a method to estimate tilting motion of an 

electrostatic micro-scanner using shared electrodes for driving 

and sensing. The method includes an AMDM circuit design to 

separate feedthrough generated by the high driving voltage.  

Novelties of the proposed sensor and estimator implementation 

include a process model based on non-linear parametric 

dynamics of micro-scanner and a non-linear sensor model 

including a Gaussian based capacitance model and a circuit 

model based on frequency bands analysis. Both EKF and UKF 

estimators are implemented, and estimation performance are 

examined and compared with experimental results.  

The results show that the UKF achieved 0.38 degree RMSE 

in phase shift estimation, while the EKF achieved 0.68 degree 

RMSE in phase estimation. Compared to the estimator ACM 

that does not use sensing signal and Kalman filters, the 

estimation error has been reduce by as much as 86.1% in phase 

shift and 78.5% in angular position estimation by UKF.  

Recommended future work is to extend and implement the 

method in a 2D micro-scanner while maintaining the same level 

of the phase shift estimation error.  

APPENDIX 

A. Derivation of frequency bands of sensing circuits 

In this section, we show the omitted derivation of the 

frequency bands of output response of each stage (𝑉𝑜1, 𝑉𝑜2, 𝑉𝑜3, 

𝑦𝑐𝑎𝑝) in detail. First, starting from (21) and expanding each 

voltage component in the output 𝑉𝑜1 by replacing 𝐶𝑠(𝑡) defined 

in (18):  

𝑉1 = 𝑉𝑑𝑟0𝑅𝑓
𝑑𝐶𝑠(𝑡)

𝑑𝑡
sin(𝜔𝑑𝑟𝑡) 

= 𝑉𝑑𝑟0𝑅𝑓[−𝑎𝑠𝜔𝑑𝑟 sin(𝜔𝑑𝑟𝑡 + 2𝜙)] sin(𝜔𝑑𝑟) 

=
1

2
𝑎𝑠𝑉𝑑𝑟0𝑅𝑓𝜔𝑑𝑟[cos(2𝜔𝑑𝑟 + 2𝜙) − cos (2𝜙)]  (28) 

𝑉2 = 𝑉𝑐0𝑅𝑓
𝑑𝐶𝑠(𝑡)

𝑑𝑡
sin(𝜔𝑐𝑡) 

= −𝑎𝑠𝑅𝑓𝑉𝑐0𝜔𝑑𝑟 sin(𝜔𝑑𝑟𝑡 + 2𝜙) sin(𝜔𝑐𝑡) 

=
1

2
𝑎𝑠𝑅𝑓𝑉𝑐0𝜔𝑑𝑟[cos((𝜔𝑐 − 𝜔𝑑𝑟) 𝑡 − 2𝜙) − cos ((𝜔𝑐 +

𝜔𝑑𝑟)𝑡 + 2𝜙)]   (29) 

𝑉3 = 𝜔𝑑𝑟𝑉𝑑𝑟0𝑅𝑓𝐶𝑠(𝑡) cos(𝜔𝑑𝑟𝑡) 

= 𝜔𝑑𝑟𝑉𝑑𝑟0𝑅𝑓[𝑎𝑠 cos(𝜔𝑑𝑟𝑡 + 2𝜙) + 𝑏𝑠] cos(𝜔𝑑𝑟𝑡) 

=
1

2
𝑎𝑠𝑉𝑑𝑟0𝜔𝑑𝑟 cos(2𝜔𝑑𝑟 + 2𝜙) + 𝑏𝑠 cos(𝜔𝑑𝑟𝑡) +

1

2
𝑎𝑠𝑉𝑑𝑟0𝜔𝑑𝑟cos (2𝜙)  (30) 

(a) (b)

(c) (d)
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𝑉4 = 𝜔𝑐𝑉𝑐0𝑅𝑓𝐶𝑠(𝑡) cos(𝜔𝑐𝑡) 

= 𝜔𝑐𝑉𝑐0𝑅𝑓[𝑎𝑠 cos(𝜔𝑑𝑟𝑡 + 2𝜙) + 𝑏𝑠] cos(𝜔𝑐𝑡) 

= 𝑎𝑠𝜔𝑐𝑉𝑐0𝑅𝑓[cos((𝜔𝑐 − 𝜔𝑑𝑟)𝑡 − 2𝜙) + cos((𝜔𝑐 +𝜔𝑑𝑟)𝑡 +

2𝜙)] + 𝜔𝑐𝑉𝑐0𝑅𝑓𝑏𝑠 cos(𝜔𝑐𝑡)  (31) 

𝑉5 = 𝜔𝑑𝑟𝑉𝑑𝑟0𝑅𝑓𝐶𝑝 cos(𝜔𝑑𝑟𝑡)  (32) 

𝑉6 = 𝜔𝑐𝑉𝑐0𝑅𝑓𝐶𝑝 cos(𝜔𝑐𝑡)  (33) 

By collecting the frequency term in each component, we obtain 

a set of frequency bands illustrated in Fig. 3 (a). 

To derive the composition of 𝑉𝑜2, first denote the side bands 

of 𝑉4 at frequencies of 𝜔𝑐 ±𝜔𝑑𝑟  as  

𝑉4_𝑠𝑖𝑑𝑒 = 𝜔𝑐𝑎𝑠𝑉𝑐0𝑅𝑓 cos(𝜔𝑑𝑟𝑡 + 2𝜙) cos(𝜔𝑐𝑡)  (34) 

By comparing 𝑉4_𝑠𝑖𝑑𝑒 to 𝑉2, one can see that as long as 𝜔𝑐  is 

much larger than 𝜔𝑑𝑟 ,  𝑉4_𝑠𝑖𝑑𝑒  is dominant in terms of 

magnitude. Therefore, a simplification is made to model 𝑉𝑜2: 

 𝑉𝑜2 = 𝑎𝐻𝑃𝐹(𝑉4 + 𝑉6) (35) 

To analyze 𝑉𝑜3, we replace 𝐶𝑠 in (24) with (18) and obtain:  

𝑉𝑜3 =
1

8
𝑏𝑜3𝑎𝑠

2[cos(2(𝜔𝑐 − 𝜔𝑑𝑟)𝑡 − 4𝜙) + cos(2(𝜔𝑐 +

𝜔𝑑𝑟)𝑡 + 4𝜙)] + 𝑏𝑜3 (
1

4
𝑎𝑠
2 +

1

2
𝑏𝑠
2 + 𝐶𝑝𝑏𝑠 +

1

2
𝐶𝑝
2) cos(2𝜔𝑐𝑡) +

𝑎𝑠𝑏𝑜3𝑏𝑠[cos((2𝜔𝑐 − 𝜔𝑑𝑟)𝑡 − 2𝜙) + cos((2𝜔𝑐 + 𝜔𝑑𝑟)𝑡 +

2𝜙)] + 𝑎𝑠 (
1

2
𝑎𝑜3 + 𝑏𝑜3𝑏𝑠 + 𝑏𝑜3𝐶𝑝) [cos((𝜔𝑐 − 𝜔𝑑𝑟)𝑡 −

2𝜙) + cos((𝜔𝑐 + 𝜔𝑑𝑟)𝑡 + 2𝜙)] + 𝑎𝑜3(𝑏𝑠 + 𝐶𝑝) cos(𝜔𝑐𝑡) +
1

4
𝑏𝑜3𝑎𝑠

2 cos(2𝜔𝑑𝑟𝑡 + 4𝜙) + 𝑎𝑠𝑏𝑜3(𝑏𝑠 + 𝐶𝑝) cos(𝜔𝑑𝑟𝑡 +

2𝜙) + 𝑏𝑜3(
1

4
𝑎𝑠
2 +

1

2
𝑏𝑠
2 +

1

2
𝐶𝑝
2 + 𝑏𝑠𝐶𝑝)  (36) 

The frequency bands in 𝑉𝑜3  are around 2𝜔𝑐 , 𝜔𝑐 , 2𝜔𝑑𝑟 , 𝜔𝑑𝑟  

and DC, as illustrated in Fig. 3 (b).  

By applying low pass filters with cut-off frequency slightly 

above 𝜔𝑑𝑟  to 𝑉𝑜3, all the signals with frequency bands above 

𝜔𝑑𝑟  can be filtered out. Replacing the term of cos(𝜔𝑑𝑟𝑡 + 2𝜙) 
using (18), we have 𝑦𝑐𝑎𝑝 as 

𝑦𝑐𝑎𝑝 = 𝑎𝐿𝑃𝐹𝑎𝑠𝑏𝑜3(𝑏𝑠 + 𝐶𝑝) cos(𝜔𝑑𝑟𝑡 + 2𝜙) 

 + 𝑎𝐿𝑃𝐹𝑏𝑜3 (
𝑎𝑠
2

4
+

𝑏𝑠
2

2
+

𝐶𝑝
2

2
+ 𝐶𝑝𝑏𝑠) (37) 

where 𝑎𝐿𝑃𝐹  is the gain of the low pass filter. (37) can be 

re-written as (15) by letting 𝑎𝑐𝑖𝑟 = 𝑎𝐿𝑃𝐹𝑏𝑜3(𝑏𝑠 + 𝐶𝑝) to be the 

sensing circuit gain, and 𝑏𝑐𝑖𝑟 = 𝑎𝐿𝑃𝐹𝑏𝑜3(
1

4
𝑎𝑠
2 −

1

2
𝑏𝑠
2 +

1

2
𝐶𝑝
2) to 

be the sensing circuit bias. Replace 𝐶𝑠(𝑡) using model defined 

in (13), we have  

 𝑦𝑐𝑎𝑝(𝑡) = 𝑎𝑐𝑖𝑟(𝐶0𝑒
−(

𝜃

𝜃0
)
2

+ 𝐶𝑏) + 𝑏𝑐𝑖𝑟  (38) 

(38) can then be expressed in discretized time domain 

measurement model, as defined in (26) 
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