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Modeling Cyclic Capacitive Loading of Thin-Film Batteries
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Previous modeling of thin-film batteries has primarily looked at simple discharge loads. This work examines modeling of mid-
frequency dynamic loads with large variation in current during repetitive loading cycles, a type of loading that is very common in
microelectromechanical system (MEMS) applications. Here we show an extension of traditional modeling of thin-film batteries to
account for switching and capacitive loading representing piezoelectric or electrostatic microactuation. This model captures behavior
at both fast and slow timescales, including effects of short-duration, high-current spikes. We show validation of the model and
introduce a cycle projection scheme that allows for over 94% reduction in numerical calculations over a full battery discharge which
includes over a million cycles.
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Limitations of available power sources, such as batteries, place sig-
nificant constraints on design of engineered systems at many scales,
from vehicles to microelectromechanical systems (MEMS).1 Battery
modeling can be used to help navigate these limitations, and many
different modeling approaches have been developed.2,3 This work fo-
cuses on adapting existing modeling approaches to capture cyclic,
capacitive loading (i.e. repeated charging of a load that behaves ap-
proximately like a capacitor) of thin-film batteries, a loading which
is very common in, for example, MEMS applications. Additionally,
for small-scale systems, all-solid-state batteries are an attractive alter-
native to more traditional liquid electrolyte constructs in that sealing
of the liquid electrolyte is avoided,4 generally providing better size
and assembly compatibility with micromachined devices. These solid
electrolytes typically have lower ionic conductivities, but the effects
of this are mitigated by the reduced thickness at which these thin films
can be deposited.5 Various studies have looked at the different proper-
ties of various battery chemistries and configurations,5–12 which is still
a very active area of research. However, modeling of cyclic capacitive
loads seems to be lacking in the literature.

Understanding the implications of cyclic loading on batteries is
important. There have been mixed reports on the broader loading
category of intermittent loads on batteries at various scales. Several
reports have indicated that loading conditions can have substantial
effects on the battery output ability. Fuller et al.13 discussed differ-
ent relaxation phenomena in lithium-ion insertion batteries. Feeney
et al.14 recently demonstrated, on a specific primary Li-ion battery,
the effect of loading conditions on overall battery capacity utilization,
using square wave resistive loads. In that study, experimental results
were used to show that the duty cycle had a significant impact on
the battery’s usable capacity. In an earlier work from Park et al.,15

experimental results also showed that loading conditions have a sig-
nificant impact on battery usable capacity. Their work was based on
the load created by a DCDC converter. In contrast, Castillo et al.16

provides experimental observations for intermittent discharge show-
ing no effect for Li-ion rechargeable batteries. It should be noted that
the conditions, batteries, and loadings are not consistent in these stud-
ies, but rather highlight the potential difficulty of fully understanding
and modeling intermittent loading conditions.

In applications such as MEMS, understanding loading effects on
the battery will be important in light of small system size, weight,
and power targets. MEMS-based micro-robots, for example, must
operate under very strict power limits and with finite power system
payload capacity. Often, electrical circuitry for low powered applica-
tion can also be very inefficient,17 requiring additional battery capacity
which can come at a premium in the often “footprint limited” area of
MEMS. Moreover, some of the most common MEMS transduction
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mechanisms (i.e. electrostatic, piezoelectric) act as primarily capaci-
tive loads resulting in high-speed, high-current intermittent discharge
from batteries, which is both less common and less desirable in most
larger-scale battery applications. Piezoelectrically-actuated walking
micro-robots,17,18 give a platform for understanding these types of
loading conditions having mid-range operating frequencies (101-103

Hz) and small capacitances (10−10-10−8 F).
As stated above, the purpose of this work is to adapt existing mod-

eling approaches to capture cyclic, capacitive loading of thin-film
batteries. There are several challenges with modeling and analyzing
this type of loading condition, yet by proper modeling, greater un-
derstanding and direction can be had in design and control. Recently
we experimentally showed effects of switching capacitive loads on
voltage profiles of battery outputs.19 That work highlighted various
phenomena related to the loading and circuitry, and presented a brief
demonstration of one cycle of this modeling approach without mod-
eling details. Here we detail the incorporation of key phenomena into
a full switching model to capture effects of cyclic capacitive loading
on thin-film batteries. We choose to use an electrochemical approach
to more readily correlate between physical properties and the model
parameters. This model was based heavily on work presented by Fabre
et al.2 and Danilov et al.20 and more detailed descriptions of the elec-
trochemical equations can be found there, as well as prior work by
Thomas et al.21 This basic model foundation was then adapted for
our loading conditions as well as to include switching and other phe-
nomena seen experimentally.19 Model parameters were found using
a fitting optimization approach that was developed to correlate the
model with experimental data.

Meanwhile, to model faster timescale dynamics of cycling requires
a significant numerical cost. A typical battery discharge in our testing
could be over a million cycles for some of the tests run. In order to
show model responses across the full battery discharge, a projection
approach was developed that allowed for projecting battery states over
many cycles to reduce numerical modeling costs. By incorporating
system characteristics of cyclic capacitive loads on thin-film batteries
at very different timescales and current levels, this combined modeling
and simulation approach should enable greater understanding and
capabilities in design and control of devices operating in this manner.

Modeling Development

Modeling background and assumptions.—Two widely used ap-
proaches for battery modeling are equivalent circuit modeling,
where battery responses are modeled using an analogous electrical
circuit,3,22–24 and physics-based models.2,20,25 This work is based on
physics-based approaches, adapted from solid-state battery model-
ing presented by Fabre et al.2 and Danilov et al.20 We expand the
use of this model to account for and investigate fast dynamics in the
electrochemical system. Fabre’s model gives a 1-dimesional descrip-
tion of an all solid-state thin-film Li/LiPON/LiyCoO2 battery with the

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 35.2.235.182Downloaded on 2017-06-13 to IP 

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1149/2.1141702jes
mailto:kbt@umich.edu
http://ecsdl.org/site/terms_use


Journal of The Electrochemical Society, 164 (2) A360-A369 (2017) A361

Figure 1. Battery schematic. A typical voltage profile for the model is shown
on the coordinate system. A theoretical concentration profile for the positive
electrode is shown also.

following assumptions made to simplify the problem: (1) isothermal
behavior with no self-heating, (2) Li electrode acts as a perfect con-
ductor with negligible voltage drop, (3) negligible volume changes,
and (4) constant electrolyte concentration/conductivity. In this work
we choose to neglect the voltage drop in the positive electrode. At
conditions where constant electrolyte conductivity can be approxi-
mated it is assumed that the resistive drop in the positive electrode
will be moderate (e.g. using the conductivity of LiCoO2 in Park et
al.,26 and the parameters approximated later in this work the positive
electrode resistance would be ∼3% of that of the electrolyte) and can
be compensated for in other parameters. Under this assumption and in
light of the increased simplicity of modeling (reduction of unknowns
from 5 to 4), this approximation seemed justified. In this paper the
loading applied (10 nF 100 Hz) allows the battery significant time to
recover between major switch/charging events, at higher frequencies
or higher average currents both the electrolyte conductivity and the
positive electrode resistance assumptions (in addition to other limiting
assumptions) will likely need to be readdressed. Finally, only battery
discharge is considered.

Key equations for the model will be given here; for a more thorough
derivation see the source literature.2,20,21 Notation will be kept similar
to the source literature for convenience. The coordinate system and
battery schematic are shown in Fig. 1 and remain similar to Fabre
et al.,2 where the boundary of the negative electrode/electrolyte is
set as zero (x = 0). Voltages are defined as: V0 = 0, the voltage
of the negative electrode which is set as a reference; V1, the voltage on
the electrolyte side of the negative electrode/electrolyte interface; V2,
the voltage on the electrolyte side of the positive electrode/electrolyte
interface; and V3, the voltage of the positive electrode.

Electrochemical model equations.—The model is based on cur-
rent balance through the battery. Current flows through the elec-
trode/electrolyte interfaces are expressed using the Butler-Volmer
equation and are defined as follows: across the negative elec-
trode/electrolyte interface (x = 0)

I

A
= i0,−

(
exp

(
αa,− F (V0 − V1)

RT

)
− exp

(
−αc,− F (V0 − V1)

RT

))
;

[1]
and across the electrolyte/positive electrode interface (x = Le)

I

A
= i0,+

(
exp

(
αa,+ F (V3 − V2 − U )

RT

)

−exp

(−αc,+ F (V3 − V2 − U )

RT

))
, [2]

where I is the current, A is the cross sectional area, i0 is the exchange
current density with subscripts (+,-) indicating positive and nega-
tive electrodes respectively, α is the charge transfer coefficient with
subscripts (a,c) denoting anodic and cathodic reactions at the given in-
terface, F is Faraday’s constant, R is the gas constant, T is temperature

Figure 2. Battery discharge schematic. Switching dynamics have various
timescales in these applications. The various switching times are represented
in the subfigure.

in Kelvin, and U is the open circuit potential (derived from a combi-
nation of experimental data and datasheet information27). Diffusion
in the LiyCoO2 positive electrode is described as:

∂c+
∂t

= ∂

∂x

(
D+

(
c+

c+,max

)
∂c+
∂x

)
at Le < x < Le + L+ [3]

D+

(
c+

c+,max

)
= D+,0 × D+,norm

(
c+

c+,max

)
[4]

with c+(x) the concentration in the positive electrode as a function of
x , the subscript max denoting the maximum concentration, D+,0 the
nominal diffusion coefficient, D+,norm( c+

c+,max
) a concentration depen-

dent function of the normalized diffusion coefficient, and Le and L+
the thicknesses of the electrolyte and positive electrode respectively.
Boundary conditions are given as:

∂c+
∂x

= 0 at x = Le + L+ [5]

∂c+
∂x

= I

AF D+
at x = Le [6]

In Fabre et al.2 the electrolyte concentration and conductivity are
approximated as constant which is adequate for low current applica-
tions. We do the same, though for higher average current applications
this would likely need to be revisited. The electrolyte resistance is
defined as:

Re = V2 − V1

I
≈ VBatt,Nom Le

F De,0ce A
[7]

With D0,e the electrolyte diffusion coefficient, ce the electrolyte Li
concentration, and VBatt,Nom is the nominal battery voltage (taken as
4.1 V in this work). Equations 1–3 and 7, define the system of four
equations and four unknowns (i.e. V1, V2, V3, and c+).

Cyclic capacitive load modeling.—Next, modeling is extended to
account for effects of cyclic capacitive loading on thin film batteries,
primarily through additional load dynamics. Previous solid-state bat-
tery analysis has focused primarily on other loading conditions such
as constant current or voltage, with limited information on capaci-
tive loads,28 so to better understand what additional phenomena are
important to incorporate into a model with capacitive loading, initial
experimental work was performed. A conceptual representation of
this is shown in Figure 2. Experimentally, a simple H-bridge switch-
ing circuit was used to cycle a 50μAh battery over various capacitive
loads. The basic circuit schematic is shown in Figure 3. Details of ex-
perimental setup and findings were reported elsewhere demonstrating
the importance of consideration of these losses.19 Key findings are
summarized here.
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Figure 3. H-bridge switching circuitry for experimental testing. Reprinted
with permission,19 and based on the circuit presented by others.29

Timescale considerations: It is noted that timescales of the capac-
itor charging, battery dynamics, and switching characteristics can be
very similar and therefore may all need to be addressed during individ-
ual cycle modeling (e.g. the battery cannot be assumed to be a perfect
power source, and switching cannot be assumed to be instantaneous).
Conversely, changes in system aspects such as open circuit potential
and diffusion coefficient can occur over time scales that are orders-of-
magnitude longer (minutes or hours vs. microseconds), which makes
simulation over the full battery discharge challenging.

Switching and leakage losses: The switching circuit used to drive
the capacitive load was not optimized and suffered from substantial
losses; however, investigation of those losses was instructive, and
necessary for comparison of modeling and experimental data. These
losses included a short period where a limited path to ground was
made during switching, while switching transistors were only partially
charged. Additionally, it appeared that there continued to be transient
switching losses at least until the switching was nearly completed.
As in any transistor-based circuit, there was also a voltage dependent
leakage current in the system. Frequency and size of capacitive loading
influenced which type of loss was dominant.

Switching dynamics and timing: The timing of the switching phe-
nomena was examined to provide an accurate load to the battery
model. Switching charecteristics and approximate equivilent loading
for capacitor charging (switch on) and discharging (switch off) are
given in Figures 4 and 5. Again for more information on experimental
setup and results see our prior work.19 The main switching events,
common in many switching circuits, included the following (shown
graphically in Figure 2):

1. Switching Initiated (tswi tch ≤ t ≤ thold ): This is characterized by
a sharp drop in battery voltage as the H-bridge transistors are be-
tween equilibrium states creating a limited path to ground through
the switching circuitry. Battery voltage drops to the threshold
voltage dictated by the switching components (Vth). This timing
was determined separately for on and off switching. For general
applications, momentary connection to ground can be reduced or
eliminated with more complex circuit design, though often with
a tradeoff of greater complexity, larger leakage current, and/or
slower response times. Switching circuit optimization was not
the purpose of this work. For capacitor discharge, the load capac-
itor is considered disconnected from the battery and the voltage
is removed.

2. Switching Delay (thold ≤ t ≤ tcharge): There is then a short period
of time before the capacitor begins to charge (switch on/capacitor
charge) or the battery begins to recover (switch off/capacitor dis-
charge) where there remains a limited path to ground through the
switch. During initial switching, a large current spike is observed
leaving the battery system. This timing was determined separately
for on and off switching.

Figure 4. Switch timing characteristics and approximate equivalent loading
for capacitor charging. The battery is represented as a voltage controlled current
source with dotted lines representing the voltage signal.

3. Capacitor Linear Charging (tcharge ≤ t ≤ tcomp): For switch on
(capacitor charge) only, as the capacitor charges the battery is
initially voltage limited by the switching transistors which causes
a constant, or near constant, current into the capacitor. This cur-
rent gives a nearly linear increase in the capacitor voltage that
increases until the capacitor reaches the threshold.

Figure 5. Switch timing characteristics and approximate equivalent loading
for capacitor discharging. The battery is represented as a voltage controlled
current source with dotted lines representing the voltage signal.
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4. Switching Complete (tcomp ≤ t): For switch on (capacitor charge),
after the capacitor has reached the switching threshold voltage for
the H-bridge transistors, the switching is considered completed
and the battery and capacitor voltage increase in a somewhat
exponential fashion, approximately as would an ideal voltage-
resistor-capacitor system. For switch off (capacitor discharge),
the battery does not need to supply current to the capacitor so after
the switching delay the battery begins to recover immediately and
the switching is considered completed.

Parasitic capacitance: Parasitic capacitance was manifested in sev-
eral ways in the battery system. It was not determined if this was from
the battery, or some other source (e.g. packaging or electrodes). This
capacitance allowed for a small portion of the battery’s charge to be
stored in a quickly accessible format that was discharged to ground
during the switching. This capacitance is in the range of the loads
applied and has a substantial effect on charging dynamics.

During the capacitor charging mode of the cycle (switch on, bat-
tery discharging), loading on the battery includes switching effects,
linear/exponential charging of the capacitor, and parasitic capacitor
charging. Capacitive loading was applied to the model by dictating the
battery voltage (i.e. capacitor voltage or threshold voltage) for short
time steps, and calculating the battery response. At each time step in
the model, the current available from the battery was determined based
on the battery voltage, VBatt , imposed by the load and the lithium con-
centration at the positive electrode/electrolyte interface. This current
is a combination of current lost through leakage (Ileak) and switching
(Iswi tch), as well as current into the load (Icap) and parasitic capacitors
(Ipara),

I (t) = f

(
c+

c+,max
, VBatt (t)

)
= Ileak + Iswi tch + Icap + Ipara . [8]

Losses related specifically to the switching events (primarily Iswitch)
were seen in two separate timeframes of the switching, and different
modeling approaches were used for each of the two. The first part is
for time tswi tch ≤ t ≤ thold during which the battery has a limited path
to ground through the switch. The current out of the battery during
this time at the given voltages is all lost to ground. During this time the
parasitic capacitor tracks the battery voltage from the battery voltage at
the time of switching, VBatt(tswitch), to the switching threshold voltage,
Vth, and that charge is considered lost to ground as well. The second
switching loss period is thold ≤ t ≤ tcomp (only applies to switch
on/capacitor charge) where the battery is now charging the capacitor.
These losses were approximated as a set resistance to ground, Rswitch,
in parallel with the load capacitor.

During capacitor discharge mode of the cycle (switch off, battery
disconnected), we again see the switching effects, but only parasitic
capacitor charging occurs as the battery recovers from the switch. All
loading in the model can be described as an imposed voltage load
on the battery. The battery voltage (VBatt ) corresponds to V3 in Eq. 2
and is equal to the voltage on the parasitic capacitor (Vpara). As the
battery recovers, its voltage is dictated by the charge on the parasitic
and load capacitors. This dependence gives interplay between voltage
and current. Loading is shown in Eqs. 9 and 10.

VBatt

Vpara

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

For Switch ON and OFF
VBatt (tswi tch) − t−tswi tch

thold −tswi tch
(VBatt (tswi tch) − Vth) , tswi tch ≤ t ≤ thold

Vth, thold < t ≤ tcomp

For Switch ON only
Vth + �Vcap , tcomp < t
For Switch OFF only
Vth + �Vpara, tcomp < t

[9]

VCap =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For Switch ON Only

0, tswi tch ≤ t ≤ tcharge

�Vcap,linear, tcharge < t < tcomp

�Vcap, tcomp ≤ t

For Switch OFF Only

0, tswi tch ≤ t

[10]

Here Ccap and Cpara are the capacitances of the load and parasitic
capacitors. The subscript “linear” refers to the portion of time when the
capacitor charges at a near constant rate. The dynamics of the capacitor
voltage after it is switched off are not tracked, and approximated as
no longer connected to the battery.

Nondimensional model parameters.—This system has vastly dif-
ferent timescales and length scales. The timescales will be discussed
later, but in both length and timescales there are several orders of
magnitude variations (e.g. thickness of the electrode may be a few
microns but surface area is on the order of a cm2). In order to deal
with some of these disparities the model was nondimensionalized
(an example of electrochemical normalization can be found in Desh-
pande et al30). This also allows us to consolidate parameters resulting
in the final nondimensional parameters, π, and coefficients for non-
dimensionalizing time and capacity, ϕ1 and ϕ2, as follows:

ϕ1 = D+,0

L2+

[
1

s

]
[11]

ϕ2 = 2

A × F × c+,max × L+

[
1

As

]
[12]

π1 = αa,+ [] [13]

π2 = ce

ce,max
[] [14]

π3 = D+,0 × c+,max × Le

De,0 × ce,max × L+
[] [15]

π4 =
(

2i0+,max × L+
F × c+,max × D+,0

) (
ce

ce,max

)−αa,+
[] [16]

π5 =
(

2i0−,max × L+
F × c+,max × D+,0

) (
1 − ce

ce,max

)αa,−−1( ce

ce,max

)−αa,−
[]

[17]

π6 = 2Cpara × VBatt,Nom

F × c+,max × A × L+
[] [18]

π7 = 2VBatt,Nom × L+
Rswi tch × F × c+,max × A × D+,0

[]. [19]

Eq. 11 represents time normalization. Eq. 12 represents the current
normalization in the positive electrode. Equations 13–17 are param-
eters of the model connected with the electrolyte and/or the elec-
trolyte/electrode interactions with De,0 the diffusion coefficient of the
electrolyte and the subscript max for the exchange current density in-
dicating the maximum value. Eqs. 18 and 19 are parameters regarding
the parasitic capacitance and the losses in the switching respectively
with VBatt,Nom the nominal charged battery voltage (for this work
4.1V).
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Numerical implementation.—Numerical implementation was
done similar to Fabre et al.,2 using the Crank-Nicholson approach ap-
plied to the Lithium concentration profile in the LiCoO2 (positive elec-
trode) and optimization to balance currents. Initial Crank-Nicholson
coding was based on methods presented by Spender and Ware,31 and
adapted heavily for the current work. Care needed to be taken for
the Neumann boundary conditions in our model. In particular, the
large spikes in current cause significant changes in the concentration
at the boundary between the positive electrode and the electrolyte.
Because of these sharp gradients a very fine discretization was needed
near the boundary; however, further in the positive electrode a much
coarser grid was adequate. To accommodate the boundary and yet
save on computational expense a non-uniform mesh was used. This
was implemented based on the equations in the appendix of Bowen
and Smith.32 Time discretization was also varied to capture the areas
of faster dynamics with greater accuracy.

Parameter fitting.—Parameter fitting was implemented to corre-
late the non-dimensional parameters with corresponding experimental
data. Fitting was performed using a combination of two types of data:
a suite of constant current tests and a single charge/discharge cycle
of a capacitor (with validation over a full battery discharge). Using
these two data sets it was anticipated that we could fit the fast and
slow dynamics of the battery model. The switching fit was performed
primarily around the area of large dynamic changes. Errors in fitting
were determined from differences in the voltages, timing, and capacity
loss (single cycle), of model and experimental data.

Weighting of different aspects of the calibration process was cho-
sen. A variety of different optimization steps were used to target spe-
cific parameters. Weighting was chosen to primary priority on switch
timing and the voltage before each switch. This voltage is key in that
it describes the charge transferred to the capacitor, which is one of
the most accurately known variables experimentally. The shape of the
capacitor charge was generally given lower priority in the weight-
ing. This was done in part because of the higher-order dynamics that
seemed to be at play beyond the fitting capabilities of the model that
limit the possible fit. It is not anticipated that a significantly better
fit of the capacitor charging profile could be obtained with changing
weighting. Low weighting was also given to the highest current of the
constant current set because model assumptions break down at high
currents, while higher weighting was often given to the lowest current
run.

Multiple iterations of a direct search method with an adaptive
mesh (patternsearch function in MATLAB) were used to perform the
optimization. In addition to these parameter fits, certain characteristics
of the variable diffusion coefficient were also fit to allow the model to
mimic in part the concentration dependency of the diffusion coefficient
that is described in Fabre et al.2 Switching parameter times were
determined from averaging experimental data.

Full battery discharge modeling.—Modeling effects of many cy-
cles of the load is important in understanding full battery responses
and implications of the loading for desired applications. However,
analyzing the load effects over time can be challenging due to the
differences in timescale. In order to demonstrate our model’s use at
various stages of the battery discharge we implemented a transition
matrix projection approach. There may be other approaches that could
also be used, such as the method of multiple scales.

The projection approach developed was as follows. Let the dimen-
sionless Lithium concentration in the positive electrode be discretized
in time and space as:

c+ (x, t)

c+,max
= y (x, t) → y (m, n) ≡ ym

n [20]

where, k, is the spatial grid point, and n is the cycle number. The
full profile vector after a given cycle noted as ȳn . It is then possible
to describe the battery in terms of the concentration profile changes

from cycle to cycle.

ȳn+1 = f (ȳn) [21]

where f is a function representing the battery dynamics for a given
set of parameters such as capacitor load size, cycle frequency, etc. If
f is approximated as a linear function near the current operating point
then delta change in concentration per cycle, �ȳn+1, can be written
as:

�ȳn+1 ≡ ȳn+1 − ȳn = f (ȳn)− f (ȳn−1) = g (�ȳn) ≈ T�ȳn [22]

The matrix T is a linearized transition matrix for the delta change
in concentration profile of the positive electrode during cycle n to the
delta change in concentration during cycle n+1. That is, we take the
delta change in concentration profile, �ȳn , as the states of the system
for a given cycle. We determined T using a perturbation method on
�ȳn . By perturbing each grid point by some δm , we can determine the
change to every other grid point, εi

m , where m denotes the grid point
being perturbed, and i indicates the affected grid point:

g

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
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n

�y2
n

...
�ym

n + δm

...
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n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�y1
n+1 + ε1

m
�y2

n+1 + ε2
m

...
�ym

n+1 + εm
m

...
�yk

n+1 + εk
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[23]

Assuming a constant δm = δ, we can construct the transition
matrix:

T =

⎡
⎢⎢⎢⎣

T 1
1 T 1

2 · · · T 1
k

T 2
1 T 2

2 · · · T 2
k

...
...

. . .
...

T k
1 T k

2 · · · T k
k

⎤
⎥⎥⎥⎦ = δ

⎡
⎢⎢⎢⎣

ε1
1 ε1

2 · · · ε1
k

ε2
1 ε2

2 · · · ε2
k

...
...

. . .
...

εk
1 εk

2 · · · εk
k

⎤
⎥⎥⎥⎦ [24]

One further numerical challenge of the electrochemical system
noted earlier is that it is naturally sequential where the solution for the
first step must be solved in order to determine the next step. Because of
this, we can take little advantage of parallel computing. Determining
the transition matrix in the manner presented here allows some of the
computation (the perturbed cycles) to be performed in parallel with
ongoing simulation cycles, reducing the sequential numerical burden.

The transition matrix, T , allows us to now project forward the
system states, �ȳn , p cycles into the future, which can be used to
determine the concentration profile as:

ȳn+p = ȳn +
∑p

j=1
T j−1�ȳn . [25]

It is important to remember that this assumes a linear system. How-
ever, this problem has a number of nonlinear aspects (e.g. the OCV,
electrochemical equations, and variable diffusion coefficient). These
nonlinearities introduce error that generally increases with projection
length (i.e., the number of cycles projected using a fixed transition
matrix approximation). An approach used in this work to reduce
this error was to update the transition matrix before each projec-
tion. A flowchart of the model and projection process are given in
Figure 6.

Results

Experimental data.—Three sets of experimental data were used,
two for calibration and parameter fitting, and the other for model
validation. The first set of calibration data consisted of five different
constant current tests including 5 μA (0.1 C), 20 μA (0.4 C), 50 μA
(1 C), 200 μA (4 C), and 500 μA (10 C). This constant current data
was gathered using a Labview setup with the current regulated by a
Keithley sourcemeter. Losses and other effects were not considered
when collecting this data.

Switching data was also acquired where a 10 nF capacitor was
cycled at 100 Hz. Experimental setup and limitations are reported
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Figure 6. Flowchart of cyclic model and projection approach.

elsewhere.19 The main limitations in the data included accuracy in the
current data and conversion from AC probe readings to DC values, as
well as noise and other extraneous effects in the current and voltage
measurements. Two sets of switching tests were used. The first was
used for calibration, and only measurements from a single cycle near
the beginning of battery discharge were used. The second was used
for validation of the model, using the full battery discharge data.

When converting these datasets to overall battery capacities, the
constant current data was significantly different from the values pub-
lished in the vendor literature compared to that of the switching data.
This could be in part due to the differences in setup, or assumptions,
or variations between tests due to battery/run variations. To correlate
the data for model validation purposes, the constant current data was
scaled using an interpolated capacity of the average current for the
switching data (15 μA). Therefore the data presented here is used
primarily for model approach validation, and is not necessarily repre-
sentative of general capabilities of the specific battery type that was
used.

All experimental runs charged the battery to ∼4.1 V and dis-
charged until ∼3.3 V. These voltages in the open circuit potential

Figure 7. Constant current profiles and calibrated fits.

were approximated as being 0.5 and 1.0 values of the normalized
lithium concentration in the positive electrode.

Parameter fitting/calibration.—Parameter fitting was used to ex-
tract ϕ1-ϕ2 and π1-π7 in Equations 11–19 and select points defining
the concentration dependent diffusion coefficient. As noted one cy-
cle of a 10 nF capacitor at 100 Hz was used in connection with
the constant current data. The area of the battery was approximated
based on the die size. Switch drop and hold times as well as thresh-
old voltage were averaged from experimental data (but could be
taken from a single data set), and are constant throughout the full
model.

Figure 8. Switching profile data and calibrated fit. Error bars are based on
rolling average and discrepancies between battery and capacitor voltage mea-
surements.
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Table I. Calibration parameters. References are for one or more of the parameters in the equation.

Optimized Parameter Initial Value Final Value Ref Value Included in Parameter Corresponds to:

ϕ1[ 1
s ] 4.54e-2 5.24e-2 D0,+ = 0.2 [ μm2

s ]2 Time
ϕ2 [ 1

m As ] 5.78e-3 4.17e-3 c+,max = 5 × 10−14[ mol
μm3 ]2 Positive electrode current and capacity

π1 [-] 0.500 0.525 Electrolyte or electrode/electrolyte boundary
π2 [-] 0.180 0.191 ce = 10.818 × 10−15[ mol

μm3 ] ce,max = 6 × 10−14[ mol
μm3 ]∗ ,20

π3 [-] 0.285 0.285 De = 6 × 10−3[ μm2

s ] Based on∗ ,20

π4 [-] 9.03e-2 1.68e-2 i0+,max = 4.4 × 10−9[ m A
μm2 ]2

π5 [-] 0.167 0.281 i0−,max = 1.5 × 10−8[ m A
μm2 ]2

π6 [-] 5.98e-8 6.03e-8 Parasitic capacitance
π7 [-] 6.09e-2 7.10e-2 Switching loss

Averaged Parameter Value Description
Vth 2.112 [V] Switching threshold voltage
tdrop,on 0.124 [μs] Battery voltage drop time, switch on (tswi tch − thold )
tdelay,on 1.004 [μs] Switch delay time, switch on (thold − tcharge)
tdrop,of f 0.521 [μs] Battery voltage drop time, switch off (tswi tch − thold )
tdelay,of f 0.069 [μs] Switch delay time, switch on (thold − tcomp)

Additional Parameter
VBatt,Nom 4.1 [V] Nominal charged battery voltage

∗Electrolyte parameters initial values were based on LiPO information.20

Thicknesses used in Initial values were approximated as 2.5 μm for the positive electrode and 10 μm for the electrolyte.

Figure 9. Normalized diffusion coefficient calibration. The blue circles in the
profile represent points that were allowed to vary within certain limits. The
red arrows show the degrees of freedom. The center two points always had the
same diffusion coefficient value.

The final parameter fitting results are given in Figures 7–9 and
Table I. Figure 9 shows the points defining the diffusion coefficient
and the degrees of freedom associated in the optimization. Table II
shows physical parameter values based on the nondimensionalized

Table II. Calculated parameters. Physical parameters were
calculated from the calibration parameters based on two assumed
values as noted.

Assumed Parameter Value

c+,max 5 × 10−14[ mol
μm3 ]

αa,− 0.5

Calculated Parameter Value

D0,+ 0.428 [ μm2

s ]
L+ 2.86 [μm]

i0+,max 2.5 × 10−9[ mA
μm2 ]

i0−,max 2.1 × 10−8[ mA
μm2 ]

Re 243[�]
Cpara 3.53 [mC]

Rswitch 4.60 [k�]

parameters and two assumed parameter values. The fitting of the con-
stant current discharge is very close, with the exception of the highest
current profile which had low priority in the calibration process. This
lack of fit is expected in part due to the assumption of constant elec-
trolyte conductivity, which assumption may need to be addressed if
loadings are used that create currents consistently higher than seen in
the switching tests presented here.

In the switching fits, it appears that there are higher order dynamics
that slow down the charging of the capacitor that are not fully captured
by the model. This potentially could be from the switching circuitry
as there could still be residual losses from incomplete switching past
the time that the battery and capacitor voltages meet. In spite of this,
the fast dynamics of the switching are able to be reasonably captured
with the model and parameters implemented through the majority of
the battery discharge as will be discussed later with validation. Some
of the starting parameters for the calibration optimization are based
off of LiPO instead of LiPON. It is understood that these will have
different properties, but for a starting point for the fitting optimization
it was considered adequate. This fitting approach allows for parameter
determination using very little high-sample-rate data by being able to
base the fit on only one on/off cycle of the capacitor. The majority
of the fitting data comes from the coarsely sampled constant current
profile that is much easier to attain.

It should be noted that the fitting of the parameters proved to
be heavily influenced by the starting point and optimization ap-
proach. Precision experimental data and/or an improved calibration
approach would be beneficial for more targeted future parameter
fitting.

Validation modeling results.—Using the parameters determined
in calibration, a full battery discharge was modeled, with a cyclic
discharge at 100 Hz over a 10 nF capacitor. This validation data
set was a separate test run from that used for model fitting and a
portion of the capacitor charge of each measured cycle is shown in
Figure 10. The discharge profiles are presented to show the changes in
cycle profile over the full battery discharge. The experimental data is
adjusted so that the switching of the model and each cycle align. As-
pects of the switching were incorporated into the model as described.
The inputs to the model include the calibration data (parameters,
switching times, and threshold voltage), as well as the initial voltage
of the validation data set. This is the voltage of the battery, includ-
ing any effects of leakage current. Because of leakage current in the
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Figure 10. Capacitor charge section of the validation data. The battery voltage
profile for each measured cycle is shown. Each cycle is aligned to correlate
switching times for the model and each cycle. Only capacitor charge data is
shown and voltage error bars are omitted.

measurement, the initial concentration is not exactly known but rather
is estimated from the voltage with the applied leakage current. The
capacitor charge portions of the model and validation data are shown
in Figure 11. The key points of the model fit are the voltage before
switching, time before the battery begins to recover, and the overall
shape of the recovery as the capacitor charges as seen in Figure 12.

Figure 11. Model/select validation data comparison. The model shows a
slightly faster charge of the capacitor than the experimental data, however,
the final voltages are very similar. The overall battery life also shows good
correlation in this scenario. Voltage error bars are omitted on experimental
data.

Figure 12. The profiles of the model/select validation data comparison are
shown. The fit shows that fast and slow dynamics of the battery are represented
by the model. Voltage error bars are omitted.

A comparison of the model and validation data current profiles
was also performed. However, due to limitations in the experimental
current data measurement,19 comparison of the model current profile
and validation data current are used only for reference and are shown
in Figure 13. The figure shows the losses in switching and the charge
transfer to the capacitor, and indicates some of the limitations of the
model. It is important to note that in Figure 13 the leakage current is
small enough to not be discernable in the plot, and parasitic capac-
itor current is based for plotting purposes on the change in battery
voltage.

In the full battery discharge model, 300 initial cycles were run
before the first projection. Additionally, a certain number of cycles
were allowed after each projection to allow the model to settle be-
fore beginning updating the transition matrix. The number of cycles
to project was determined on a tradeoff between projection size and
error. A few additional cycles were used before each projection to
determine an appropriate projection/error. The full battery discharge
model data shows reasonable agreement with the experimental data.
Figure 14 shows a comparison between the experimental and mod-
eled discharge based on the number of cycles performed. Concen-
tration profiles for the full discharge of the battery are shown in
Figure 15. The small changes in slope of the concentration at the early
cycles may indicate that the diffusion did not play a large role. This is
assumed in part to be why large projections during this portion were
possible.

A significant computational decrease was able to be achieved us-
ing this projection approximation. One measure of this reduction is
the ratio of cycles fully modeled to the total number of cycles (in-
cluding projected cycles). The modeled cycles do not include cycles
that were performed in parallel (updating the transition matrix, and
some trial projections), and certain assumptions were made for other
overhead costs. The overall approximate Full Modeled Cycles/All
Cycles ratio was to 0.19% after ∼0.677 million cycles, and 6% after
nearly 1.43 million cycles, which is nearing the end of the battery
discharge. Calculations are based on use of a quad core computer for
processing. This numerical cost is based heavily on the equipment and
projection/error algorithm. For example, if more cores were available
for processing the transition matrix could be updated more quickly,
or if more error was allowed larger projections could be made, both
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Figure 13. Current comparison. The initial part of capacitor charging is shown
comparing the validation current19 and the different components of the model
current. Leakage current is small compared to other currents. The large current
spike is due to the discharge of the parasitic capacitor. Circle and square
symbols are to distinguish different profiles. (Lower) Detailed split view with
different scales.

Figure 14. Discharge profiles. The discharge profiles of voltage just before
capacitor charge are shown for the model and validation datasets.

Figure 15. Positive electrode concentration profile by cycle. Normalized con-
centration profiles for the positive electrode over the full discharge of the
battery. Labels indicate cycle number.

of which would reduce the numerical cost. Additionally, other ap-
proaches to numerical reduction are possible. For example, it may be
possible to do a hybrid constant equivalent current projection (which
would likely have greater success where the battery is able to recover
between switching events like in this work); however, the proposed
approach allows us to determine a benchmark for future work in
full battery discharge modeling. Ultimately the projection is useful
here to enable us to see the evolution of the modeled cycle profile
over the battery discharge and validate the cyclic capacitive discharge
model.

Conclusions

Cyclic capacitive loading of solid-state batteries in the mid-
frequency range are of importance in areas such as MEMS. Here
we review the fundamental electrochemical equations that define this
type of system and the basic model presented by Fabre et al.2 and
Danilov et al.,20 and the phenomena discussed in our previous work.19

The underlying battery model was found to be suitable for capturing
fast dynamics of individual charge cycles with some parameter adjust-
ment, provided that all aspects of switching losses and parasitic loads
were assessed/incorporated. We provide and demonstrated a hybrid
parameter fitting framework where limited cyclic data can be used in
connection with full discharges at constant current to capture fast and
slow dynamics of the system. We developed and demonstrated a pro-
jection approach that can capture cyclic data from a limited number
of cycles and project that over many cycles to significantly reduce
the computational expense of fully modeling these systems. Finally,
we implement these into a full battery cyclic model. We were able to
show changes in cycle profiles over time with reasonable fitting of the
battery discharge. Further work can be done to look at a broader set
of loading conditions (capacitance and frequency, particularly higher
average currents where the battery is not able to settle as much during
cycling), as well as understanding the limitations of and improving
the projection approach described here. Overall this work highlights
the issues with cyclic capacitive loads, provides a modeling approach
to describe these systems, and a projection approach allowing track-
ing of the cyclic profile over a battery discharge at reduced numerical
cost.
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List of Symbols

Symbol Description Units

A Area [m2]
C Capacitance [F]
c Concentration [ mol

m3 ]

D Diffusion coefficient [ m2

s ]

D0 Nominal diffusion coefficient [ m2

s ]
F Faraday’s Constant [ C

mol ]
I Current [A]
ILeak Leakage current through the switching circuitry [A]
ISwitch Current lost through switching [A]
i0 Exchange current density electrode/electrolyte

interface
[ A

m2 ]

L Thickness [m]
R Universal gas constant [ J

mol K ]
Rswitch Approximate resistance in limited path to

ground during tcharge-tcomp

[�]

T Temperature [K]
T Transition matrix
t Time [s]
tcharge Time at beginning of capacitor charge [s]
tcomp Time at switching completion [s]
thold Time at beginning of the delay [s]
tswitch Time at switch initiation [s]
U Open circuit potential [V]
V Voltage [V]
VBatt Battery Voltage [V]
VBatt,Nom Nominal battery voltage at full charge (4.1V) [V]
Vth Switching threshold voltage [V]
x Spatial coordinate [m]
y Normalized li concentration [-]

Greek

α Charge transfer coefficient [-]
δ Normalized concentration perturbation size for

transition matrix construction
[-]

ε Normalized concentration perturbation effect [-]
κ Conductivity [S]
π Non-dimensional parameter [-]
φ Coefficient for normalization Varies

Subscripts/Superscripts

+/- Positive negative electrode
a Anodic
c Cathodic
cap Load capacitor
e Electrolyte

k Total number of spatial grid points in finite
difference

linear Time during which the load capacitor has an
approximate linear charge

m, i Finite difference spatial grid point
max Max value possible
n Cycle number
p Number of cycles projected
para Parasitic capacitor
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