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Ab$lmcf-Instrumenting a disk drive suspension with vihra- 
tion sensing strain gages can enhance vibration suppression 
in hard disk drives, provided that the gages are properly 
located and are sflciently sensitive. The cost function of an 
optimal LQG controller with Kalman filter is proposed as an 
objective function for determining the optimal location and 
orientation of displacement sensors on a flexible structure, such 
as the placement of strain gages on a disk drive suspension. 
Analytical hounds are derived for the Kalman filter Riccati 
equation in a modal system with large sensor noise. These 
hounds prcdnce analytical approximations that reduce the 
computational complexity of the LQG optimization approach 
with cheap control. Results are applied to a prototype disk 
drive suspension to identify sensor positions and sensor LP 
qnirements. Methods of installing strain gages on steel at 
precise locations are briefly discussed. 

I. INTRODUCTION 

Increasing data storage densities in computer hard disk 
drives require positioning drives’ read-write heads over 
ever-smaller data hits. As the industry targets hit densities 
of 1 terabit per square inch, airflow induced vibration of 
the mechanical servo assembly becomes a major obstacle 
to attaining the necessary servo precision. In particular, 
excitation of vibration modes in the e-block and suspension 
upon which the head and air bearing are mounted will cause 
significant off-track error during tracking operations. 

One method of improving servo capabilities to overcome 
these problems is to incorporate a second actuator into the 
servo system to increase servo bandwidth. Currently, disk 
drives rely on a single large voice-coil motor for actuation 
(see Fig. la and Ib). Proposed dual-stage configurations 
include actuated suspensions (Fig. 2a), with a microactuator 
built into the suspension itself, and actuated sliders (Fig. 2b) 
and heads, with smaller microactuators installed underneath 
or inside the slider, beyond the vibrating region. 

Several researchers have examined the use of additional 
sensors within a disk drive to better detect and reject 
vibration disturbances [ I ]  [2] [3]. Adding sensors to the 
disk drive permits acquisition of vibration information at a 
higher sampling rate and closer to the point of disturbance 
than is possible from position error signals taken from the 
disk itself. This information may be fed hack to the VCM 
or actuated ssuspension or fed forward to actuated sliders 
and heads (Fig. 2). Micro-scale processing techniques allow 
precise installation of vibration sensors at locations with 
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Fig. I .  
dnve servo assembly 

(a) Conventional disk dnve configuration; (b) Conventional disk 

Fig. 2. Dual-stage disk drive servo configurations 

maximal vibration information. Meanwhile, certain semi- 
conductor and thin film processing techniques produce very 
high sensitivity gages, and may potentially be integrated into 
suspension fabrication and assembly. 

In designing a stiain gage for vibration detection on a 
disk drive suspension, it is important to place the gage in 
a location that provides the maximum amount of useful 
information to the selvo system controller. Not only should a 
strong signal he available, but it should detect any vibration 
modes that could contribute to off-track error of the read- 
write head. However, vibration modes that do not cause off- 
track error should be avoided by the sensor, as the signal 
from these modes will unnecessarily excite the controller. 

In general terms, ‘finding optimal strain gage locations 
is a problem of optimal placement of an arbitrary number 
of displacement sensors on a flexible structure. Hac and 
Liu [4] applied an observability criteria to this problem, 
which was adapted to disk drives by Banther, et al. [5] and 
Gross [61. Several researchers have proposed using some 
objective function based on Kalman filter results [7] [8] 
and Kondoh et al. [9] incorporated controller structure by 
minimizing the quadratic cost function in standard linear- 
quadratic-gaussian (LQG) optimal control. The solution of 
the LQG problem provides an optimal result in terms of the 
H2 norm of the system, hut the approach is computationally 
intensive and requires knowledge of the stochastic properties 
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of the system. 
In this paper, we optimize sensor locations on a disk drive 

suspension according to the cost function of the standard 
LQG problem, but present numerical approximations of 
the Riccati equation solutions to simplify computational 
complexity and relax requirements on knowledge about 
the stochastic system. We compare the choices of optimal 
sensor location according to exact and approximate methods 
and comment on methods for fabricating the optimized 
sensors. 

11. PROBLEM DESCRIPTION A N D  THEORY 
A. System Model 

The disk drive servo system described here consists of the 
flexible suspension with inputs from the voice coil motor 
(VCM) and airflow disturbances, plus an actuated-slider 
microactuator at the tip of the suspension. The motion of a 
flexible structure can be written as the summation of modal 
contributions. For instance, off-track displacement, z, of the 
read-write head may be written as 

i=l 

where vi is a modal coordinate for mode i, d; is the 
displacement at the tip of the suspension in the modal 
coordinate for mode shape i, X ~ A  is the displacement of 
the microactuator relative to the tip of the suspension, and 
n is the number of modes considered. 

Similarly, strain gage measurements from this system are 
n 

YL = ~ C L P ~   CL^ = Ksensec;; (2)  
i=l 

where y~ is the strain gage output voltage and CL, is the 
magnitude of strain, e at the sensor location resulting from 
mode i, ci.. times the sensor gain, KSense in VI€. 

The modal dynamics are driven both by the VCM and 
disturbances: 

Here, the dynamics of each mode are described by its 
natural frequency, w,, and damping ration, c,. The modal 
coordinates are normalized to U; times the VCM input 
for convenience in later manipulation. The b;k coefficients 
adjust disturbance k for its influence relative to the VCM on 
mode i, due to differing location and frequency weighting. 

The microactuator dynamics have a similar description, 

X M A  + 2eMAWMAxMA + w:~xMA = K M A ~ M A  (4) 

with WMA and &A the natural frequency and damping ratio 
of the microactuator, and KMA the microactuator gain. 

In state space, the system may be described in the form 

X = A x + B u + B , w  y = C x + v  z = D x  ( 5 )  

E[wwT] = wIt,r E[uuT] = vl,,, (6)  

Again, z E R is off-track error at the slider and y E 
is output from T strain gages plus an additional measurement 
of relative position error signal (FWES) measured by the 
microactuator. The inputs are 1 white disturbances in M E 
P' with spectral density w and two actuated inputs, from 
the VCM and microactuator, included in U E R2. Sensor 
noise is IJ E P', white with spectral density v. Experimental 
studies have verified that airflow excitation has broadband 
frequency spectrum and can be accurately modelled by zero- 
mean input white noise [lo] [ll]. 

The state vector x E P2"+2 consist of the modal 
and microactuator coordinate displacements and normalized 
velocities, 

The state matrices are 

(9) A = d i a g (  AI . . .  A,MA ) 

0 b l l w t  . . .  0 b,lw., 0 0 

0 b l z w  . .. 0 b,i'w, 0 0 

: : ] (12) B . , , = [ :  . .  : . .  

=,,(*I1 0 ' ' .  C l " ( * , l  0 0 0 

' ' i ] (13) 
w(e.1 0 ". G"iW 0 0 0 

0 o . - .  0 o c . . o  

D = [ d i  0 . . ,  d ,  0 1 O ]  (14) 

bij and d, are defined as before, while c ; j ( Q j )  is the strain 
from mode j measured at strain gage i, written explicitly as 
function of the location and orientation. Q;, of the sensor. 
c,, is the RF'ES signal gain from the microactuator. 

B. Optimization Theory 
0ur.objective is to choose a sensor location and ori- 

entation that minimizes off-track error of the closed-loop 
system. We choose to minimize the H2 norm of the system 
when implementing the optimal linear quadratic gaussian, 
or LQG, controller and filter. 

with K the optimal linear, stationary controller, F ( Q )  
the optimal linear, stationary filter for a given C(Q),  and 
R a weighting function on the inputs. Vector Q includes all 
coordinates and orientations of sensors that may be varied 
during optimization. 
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K and F are obtained by solving Riccati equations. The 
linear controller, K ,  for this system is not dependant on 
sensor location: 

U = -Kt  (16) 
K = R-‘BTP (17) 

ATP + P A  - PBR-’BTP + DTD = 0 (18) 

The optimal linear filter, F ,  is a Kalman filter and does 
depend on sensor location 

A t  + Bu + M C ( Q ) T ~ - ’  [$ - C(@)?] (19) d = 

F = M C ( Q ) T ~ - ’  (20) 

A M + M A ~  - M C ( @ ) ~ ~ - ’ C ( @ ) M + B , W B , T  = o (21) 

The value of the objective function with this controller 
and filter is 

J H ~  = tr [PFvFT + M D T D ]  . (22) 

The drawbacks of this optimization method are require- 
ments on knowledge about the system md computational 
complexity. Reasonable re&s ~enpite retiable. estim&s of 
disturbance and mise magnitudes. Even &em this ~XQ& 
d o n  is available, solving the Rkcatt equatim at “y 

lccatiws requires a large “ U l t  of c0qatattoIL time. In 
the following section, we desmi am q m x i k t h  for 
the Riccati equation in a system described 0y GIle mmdd 
components desaibed previously. 
An alternative to LQG optimization is to optimize some 

measure of the observability of the system. The o b s w -  
ability gramian, Q,  for an asymptotically stable state space 
system satisfies 

AT& + & A  + C(@)TC(@) = 0. (23) 

The eigenvalues of the observability gramian are a mea- 
sure of the energy from each mode for a given sensor 
placement, and can thus be used as a basis for locating 
sensors. Various objective functions based on eigenvalues 
of the observability gramian have been proposed, as in [5] 
and [4]. However, as will be discussed later, observability 
approaches may neglect the relative importance of the 
modes in causing off-track error, and not necessarily provide 
the best signal in a closed-loop system. 

C. Approximate Riccati Solution 
While an exact analytical solution to the Riccati equa- 

tion exists, it requires a large number of calculations and 
can make optimization impractical, especially for a large 
numbers of variables. A Zn-eigenvalue problem must be 
solved to obtain the estimation error covariance matrix M 
at each location a. Observability-based approaches are also 
relatively complex, requiring solution of an n-eigenvalue 
problem. This makes sensor optimization difficult for sys- 
tems with large numbers of modes or many potential sensor 
locations. 

To mitigate this problem, we have derived a set of 
approximations for error covariance matrix M .  For a system 
with the state space form above, bounds may be placed 
on certain terms of matrix M ,  including all those which 
appear in objective function (22). Under certain conditions, 
these bounds approximate the values of the diagonal terms 
in M and show them to be much larger than the off-diagonal 
terms. The full derivation of the approximations is included 
the Berkeley CML Report by this title [13]. 

The chief approximation result is that, for a system of 
the type described by equations (1- 3), if for all i and j ,  

1) Modes are widely spaced: 

Iw, ~ wll >> 0 (24) 

2) Sensor noise is large relative to other parameters: 

then, for all i, in an undamped system 

Furthermore, in both cases; for all! i # j; 

mzi-1,zi-1 >> mzi-i,zj-1. (28) 

Since the range of motion of both the VCM and mi- 
croactuator is very :large relative to suspension vibration, 
we solve the above equations for the case of cheap control, 
R + 0. From loop transfer recovery (LTR) results [15], in 
this situation P i 0 and 

n 

JHZ = ~ d h - 1 , 2 . - 1  (29) 
* = 1  

with m from (26) or (27). 
If non-cheap con@ were required, the cost would be 

i = l  j=1  ($ ckic.) (30) 

Here, pi ,  is the ( i , j ) th  term of the stationary Riccati 
solution P from ( 18). Notice that P need only be solved for 
once, since it does not depend on sensor location. Analogous 
results exist for a discrete time system derived from the 
continuous time mode: described above. 

Approximating the objective function in this manner has 
several advantages. Its main effect is that it greatly simplifies 
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the computation of the objective function. It reduces the 
problem of solving for n eigenvalues to a straightforward al- 
gebraic computation. In our tests, this reduced computation 
time by a factor of 20. The relative computational benefit in 
the case of non-cheap control is the same. This is especially 
important for a system with many modes or sensor location 
variables. The approximation allows the optimal solution 
to be found easily for varying system parameters where a 
exact solution would be highly impractical. However, the 
approximation also gives insight into physical trade-offs 
between parameters of the system, and reduces the amount 
of knowledge about the system needed beforehand. 

First, we comment on the conditions under which the 
approximation holds. Widely-spaced modes are a common 
requirement for simple analysis of modal systems. More 
interesting is the second condition, (25). which indicates 
that the approximation applies to systems with large sensor 
noise. In fact, it seems to imply that the signal from the 
sensors will be below the noise floor of the system, but the 
addition of multiple modes and the presence of resonant 
peaks can raise the signal well above the noise floor while 
(25)  remains satisfied. Furthermore, many of the bounds 
used to derive the approximation are loose, so that the 
approximation may be reasonable even for smaller noise 
levels. The approximation should be checked against the 
exact solution for several test cases if this is attempted. 

When the approximation does perform well, the relative 
significance of the parameters in the system model is visible, 
which can be useful for design and interpretation; a criticism 
of the use of Kahnan filter methods for optimizing sensor 
locations is lack of a physical interpretation of the result. 
The best sensor locations will have large strains (large Ck, 
coefficients), as one would expect. However, in a choosing 
between strain contributions from different modes when 
there is a trade-off, a more optimal location will emphasize 
the mode with a larger contribution to off-track error, as 
computed from the sum of input coefficients to that mode, 
the be's, and the modal displacement coefficient at the 
slider, d;. In non-cheap control, the cost of controlling that 
mode is added in, while including damping in the system 
diminishes the difference between modal contributions. 

We can compare our proposed method to the observability 
methods. For a lightly-damped system, the eigenvalues of 
the observability grammian can be approximated as 

Maximizing the minimum eigenvalue is equivalent to 
minimizing the maximum inverse eigenvalue, or, 

The value to be minimized in the observability case is 
qualitatively similar to the LQG filter result, but the relative 
importance of each mode to off-track error is lacking. As a 
result, the observability approach will locate sensors so as to 

best detect modes with small strain contributions, ignoring 
more easily detected modes. If one of these modes causes 
proportionally larger off-track error than strain signal, it may 
be lost by the sensor at levels that cause significant off-track 
error. One solution, used in [6] ,  is to weight the eigenvalues 
by their modal contribution to off-track error. This tends 
to give close agreement with LQG results, though it still 
neglects input coefficients and requires more computation. 

Finally, the approximate solution shows that, for a noisy 
system, the optimal sensor location is independent of the 
exact noise and disturbance strength. Each of the diagonal 
terms in M is multiplied by the same ,,6? constant. This 
means that only enough knowledge about the stochastic 
properties of the system to validate the approximate solution 
is required. The exact noise and disturbance levels need not 
be known prior to design of the system. 

111. OPTIMIZATION RESULTS FOR DISK DRIVE 
SUSPENSION 

A. Optimization Implementation 
A commercial suspension was modelled in ANSYS for 

finite element analysis of vibration modes. A modal analysis 
was performed to identify the natural frequencies of vibra- 
tion, followed by a harmonic analysis near those frequencies 
to obtain the frequency response of the structure. The 
analysis provided transfer functions from VCM input to off- 
track displacement and to x-normal, y-normal, and xy-shear 
components of strain at any model element. 

Here, U ( s )  is the VCM input in the frequency domain, 
Z(s) the frequency response of off-track error, and Yk(s) 
the component of strain at sensor k in any single strain 
direction. Damping ratios, modal weights, and gains for d, 
and dk, were obtained by the circle fit  modal identification 
method. 

The x-, y-. and xy- components of strain at each element 
were projected to a voltage output for an arbitrary strain 
gage oriention 9 using Mobr's equation and the estimated 
gage sensitivity K..,.., 

c = K,,,,, [ 1+cy28 
1-cos28 

] [ 2 ] , 2 2 

C X Y  
(35) 

where C,, Cy, and C,, are the sensor output coefficients 
for the three strain components. 

Stochastic parameters of the system (w.v) are estimated 
from strain gain models and experimental measurements 
of suspension vibration in other disk drives at w = 1 x 
lo-' m N 2  and zi = 1 x V 2 .  We use a single 



Rg. 3. Ansys model of 3430 suspension Fig. 4. Optimal sensor locations (dark to light), cheap control R - 0 
disturbance and set input coefficients bll to b41 equal to one, 
and reduce bsl and bsl to 0.5 and 0.1, respectively to reflect 
lower windage measurements at frequencies above 10 kHz. 
A more accurate model would include adjustments to all 
bi's to match both spatial and frequency domain properties 
of the input disturbance, but this information is not well 
known. Sensor gain, K,.,,,, from our preliminary fabrica- 
tion studies is estimated at 60. For our non-cheap control 
example, we set R = lo-', which gives approximately 
equal contributions to total cost from off-track error and 
control effort. 

We have set up this problem as a dual-stage system, but 
because our system model does not include a disturbance 
to the microactuator, the microactuator mode is not in 
the correct form for our approximation. Fortunately, with 
the microactuator largely decoupled from the rest of the 
system, its effect on the cost function is very small. For 
R 5 2 x 10P,  neglecting the microactuator gives less than 
a 1% change in total cost. In reality, there may be some 
coupling between suspension vibration and microactuator 
displacement and correlation between disturbances to the 
suspension and microactuator. This could provide additional 
information about suspension vibration and thus influence 
sensor selection, but we choose not to assume that this 
information will be available. 

location will have both a high level of strain and a large ratio 
of strain to off-track response at each mode. This results in 
a position that approximately matches the importance of 
modes at the sensor to their importance to off-track error at 
the slider. For this sensor location, the most difficult mode 
to detect is mode 5, 'a torsion mode, for which a disturbance 
producing one nanometer off-track displacement would pro- 
duce 56 nanostrain at the sensor. 

It is also clear from Fig. 4 that the approximate solution 
to the LQG cost function gives results that are very similar 
to the exact solution. This agreement can also be seen 
a individual sensor: locations as a function of orientation. 
Fig. 7 plots the cost function as a function of angle for 
optimal element 1346. Both methods show undesirable 
orientations at 75 and 122 degrees, and close agreement 
elsewhere. 

The approximation we have developed is applicable to 
this situation because the strain in the system is very small, 
ranging from IO to IOOS of nanostrain for the level of 
disturbance anticipated. This results in very small c k i  coeffi- 
cients that help satisfy (25). The largest value for a quantity 
in (25) is 0.16, large enough to cause some discrepancy 
between exact and approximate Riccati solutions, but still 
giving generally good agreement. Table I is an example of 
this: while the error between estimated and exact diagonal 
coefficients is as high as 33%, this is a small discrepancy 
for a set of diagonal terms of M that range over 3 orders 

E. Locarion Oprimization Results 
we the LQG cost function at 100 high-strAn 

~~~ 

elements in the hinge region of the suspension at sensor of magnitude. idditionally and as the largest off. 
orientations from 0 to 180 degrees. The cost function 
was evaluated for both the exact solution for the Kalman 
filter Riccati equation and for the approximate solution 
discussed above. Fig. 3 shows the full ANSYS model of 

diagonal is m&h smaller, at m,,9 = 1.7 10-8, 

the suspension with the hinge regions highlighted. Fig. 4a . . 

and 4b show the 20 best elements for strain gage installation 
using both evaluations. Both the exact s%tion and the 
approximation identify element 1346 as optimal, with the 
strain gage oriented at 11' for the exact solution and 10" for 
the approximation. For non-cheap control, the same optimal 
element is chosen, as shown in Fig. 5, but the optimal angle 
is reduced lo 10" in the exact solution, and the distribution 
of good elements is shifted slightly up the suspension. 

The dynamic response from disturbance to sensor output 
and off-track error is shown in Fig. 6. The best sensor Fig. 5. Optimal sensor locations (dark to light), R = 
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Fig. 6. Frequency response of sensors and off-track disturbance 
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Fig. 7. Cost function by sensor orientation. element 1346 

C. Sensor Fabrication 

We are currently exploring several methods for installing 
strain gages at the locations identified by our optimization 
procedure. The sensors' targeted resolution is 56 nanostrain, 
corresponding to a maximum of one nanometer displace- 
ment from any individual mode based on our optimiza- 
tion results. MEMS-style processing and photolithography 
permit fabrication of very small sensors at precise lo- 
cations. Furthermore, highly sensitive materials, such as 
piezoresistive semiconductors and piezoelectric films are 
available. However, using these techniques and materials 
with steel substrates imposes certain constraints on the 
fabrication procedure. Any treatments to the substrate itself 
must be performed at low temperatures to avoid altering 
the suspension's material properties, thus limiting materials 
available for direct deposition. The finished device must 
also be robust enough to survive later suspension processing 
steps, particularly bending the hinge region to set suspension 
pre-load. 

TABLE I 
COMPARISON OF EXACT A N D  APPROXIMATE RICCATI SOLUTION 

Fig. 8. Cross-sections of proposed stain gages 

TABLE I1 
PROJECTED PlEZORESlSTlVE SENSOR PERFORMANCE 

Table I1 compares various piezoresistive materials based 
on their gage factor, noise, and resolution for a single FEA 
element-sized 100 pm long by 20 pm wide strain gage and 
a 5 nv/& electronics noise level. Conventional metal 
strain gages, such as constanten, are not sensitive enough for 
the necessary resolution without extremely clean circuitry. 
Semiconductor films deposited at low temperatures, such 
as amorphous hydrogenated silicon (aSi:H) tend to be 
limited by intrinsic thermal noise due to poor conductivity, 
but, adapted to a steel substrate, may still achieve the 
necessary resolution. Finally, single-crystal silicon and high- 
temperature polysilicons project the best performance, but 
these cannot be deposited directly on steel without violating 
temperature constraints. 

Direct deposition of a piezoresistive material on a steel 
substrate is the simplest method of fabricating strain gages 
on steel substrates. The piezoelectric may be pattemed 
directly and a simple metal interconnect added on top, as 
shown in Fig. 8a. Our initial fabrication tests used sputtered 
silicon for its simple deposition. A gage factor near 15 was 
observed, but we have been unable to reduce resistivity 
below 200 a-cm, limiting resolution to approximately 200 
nanostrain. The sensors were pattemed from highly-doped 
p-type silicon sputtered on steel coated with a dielectric, 
plasma-enhanced chemical vapor deposited (PECVD) sili- 
con oxide. Film quality was mainly limited hy contamiua- 
tion from the sputtering process, along with low dopant acti- 
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vation and mobility in the unstructured film. More complex 
deposition techniques, such as laser-crystallized polysilicon 
and certain PECVD silicon deposition, may produce more 
conductive sensors. 

To capitalize on the extreme sensitivity of single crystal 
silicon, we are also constructing sensors to be bonded 
to steel, using a direct metal-on-metal bonding procedure 
developed by Microassembly Technologies, Inc. A metal 
landing layer is patterned on the steel substrate, with landing 
pads, interconnects, and external bond pads, while sensors 
are fabricated from the device layer of a silicon-on-insulator 
wafer. The sensors are undercut in a wet etch, leaving them 
attached only by thin tethers to the handle wafer. Metal 
bonding bumps are deposited on the sensors and the two 
substrates are pressed together, forming a cold weld between 
bumps and landing pads. Removing the handle wafer breaks 
the tethers and leaves the sensors on the steel. This sensor’s 
cross-section is shown in Fig. 8b. 

An alternative to piezoresistive sensing is to use a piezo- 
electric film, which may provide an even higher sensitivity 
than semiconductor materials. The difficulty of this ap- 
proach is forming a high quality piezoelectric film on a 
rough steel surface. We have been able to deposit sputtered 
zinc oxide films with sensitivity as good as one-fifth that 
of bulk zinc oxide by planarizing the steel surface with 
spin-on-glass and using a gold seed layer. This sensitivity 
projects to single nanostrain sensor resolution, but the full 
processing sequence is noy yet tested. The zinc oxide film 
must be capped with an etch stop layer, patterned into 
sensors, and topped with interconnects to external bond 
pads. Such a sensor is shown in Fig 8c. We are currently 
testing patterned zinc oxide sensors. 

Iv. CONCLUSIONS AND FUTURE WORK 
In this paper we have examined the design and fabrication 

of an instrumented disk drive suspension. We proposed the 
optimization of sensor location based on the cost function of 
an LQG controller and filter. An approximation for the cost 
function is derived for low-cost control in a noisy system 
to reduce computational complexity and gain insight into 
optimization results. The optimal location for a single strain 
gage on a sample suspension was identified on the upper 
inside of the hinge region. with good agreement between 
exact and approximate optimization methods. We are cur- 
rently testing strain gage fabrication methods to produce 
strain gages at optimal locations on steel suspensions. 

Future improvements to the instrumented suspension de- 
sign involve refinement of both sensor optimization and 
fabrication. The simplifying approximations introduced for 
the optimization scheme may he used to quickly evaluate 
multiple sensor schemes. To accommodate more robust 
controller designs, it will also be useful to adapt the opti- 
mization scheme to reject strain sources, such as suspension 
bending modes, that do not correspond to off-track motion 
at the readlwrite head. The final choice of sensor locations 
and fabrication techniques will be used to assemble a full 

instrumented suspension for integration in a dual-stage disk 
drive servo system. 
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